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ABSTRACT
Many conventional demosaicking methods are based on hand-crafted
filters. However, the filters yield false colors in salient regions like
edges and textures. For acquisition of high quality images, we focus
on neural networks. Neural networks lead to high accuracy in many
fields. However, there are few methods in demosaicking field. For
adaptation to demosaicking, we consider not only network’s archi-
tecture but also the input. In this research, we utilize a Bayer image
as input of our networks. However, different filter is needed in es-
timation at different color pixels, for example, missing red value at
green pixel and that at blue pixel. Therefore, we prepare four net-
works with downsampling operators classified by color patterns in
Bayer images. This downsampling operator not only identifies the
color pattern but also reduces the calculation cost in each network
due to reduction of the size of feature maps. Besides, preparation
of multi-networks instead of a deep single-network is suitable for
today’s parallel computing. Moreover, we utilize not missing color
images but chrominance images as output. Compared to results with
missing color images as output, the results with chrominance images
obtains higher accuracy. Experimental results show our CNN-based
approach produces high quality restored images.

Index Terms — Demosaicking, Convolutional Neural Network,
Multi-network, Parallel Computing

1. INTRODUCTION

Digital color images are widely used in today’s world. The color
images used in our daily life are full-color images. Each pixel of full-
color images has the three color values: red, green and blue. There
are two types of digital cameras to obtain a digital color image. The
digital cameras which can take full-color images are three-plate cam-
eras. Three-plate cameras have three color sensers corresponding
to the three colors. However, three-plate cameras are expensive and
large equipments. Therefore, single-plate cameras are in general use
instead. Single-plate cameras have a color filter array (CFA) and
the output color images have one color value in each pixel. Hence,
restoration of CFA images taken by single-plate cameras to the full-
color counterparts is needed and it called demosaicking. Especially,
Bayer pattern [1] is one of the most popular CFA and many demo-
saicking methods are proposed. The simple demosaicking way is
image interpolation-based methods [2–6]. Bicubic [2] is a famous
interpolation algorithm to upscale grayscale images and it can be
applied for demosaicking by processing each color independently.
However, its outputs contain gaps in edges among the colors and the
gaps cause false colors shown in Fig. 1. The false color is the main
problem in demosaicking. To solve the problem, some methods uti-
lize continuity of color difference or guided upsampling [3–6]. These
methods obtain much better accuracy than the methods processing

(a) Full-color (b) Bayer (c) Estimated

Fig. 1. False color in estimated image. (c) is estimated image by Bicubic [2]
from (b).

each color independently. However, they are based on hand-crafted
filters to interpolate and cause some errors in some high frequency
regions such as textures.

The methods which have better accuracy are learning-based
methods [7–10]. Learning-based ways gather a lot of CFA images
and the full-color counterparts and train model parameters to make
full-color images from CFA images. Learning-based methods can
overcome interpolation-based methods in accuracy, however, their
accuracy depends on training datasets and their models.

In this paper, we propose a new learning-based method utiliz-
ing Convolution Neural networks (CNN). Neural networks gather a
lot of attention in many image processing fields and produces bet-
ter results than conventional methods. For example, SRCNN [11]
produce high quality upsampled images in gray scale image upsam-
pling. For adaptation to demosaicking of CNN, our proposal has
three contributions. First, we use a Bayer image as input without
any interpolation. Second, we prepare networks for four color pat-
terns. Third, we utilize not missing color images but chrominance
images as output. These points lead to acquirement of better results
compared to conventional demosaicking methods and experimental
results show high accuracy of the proposed method. Moreover, our
networks are suitable for parallel computing. We adopt downsample
operators to identify the color patterns. The size of feature maps in
our networks is reduced after the operators. Besides, our network
has independent parts which can parallel processing.

2. RELATED WORKS

Compared to super-resolution, CNN-based demosaicking methods is
fewer. Especially, most methods use a pre-estimated full-color image
by a conventional demosaicking method as input. For example,
R. Tan et al. [9] adapt a pre-estimated image by Bilinear as the
input. This method is divided into two parts. The first part focus
on estimation of green pixels, which are contained the most in Bayer
images. The second part is to estimated full-color images by updating
the output of the first part. They use residual maps as outputs of the
both parts. In [12], D. S. Tan et al. also adapt a pre-estimated image
by a conventional demosaicking method as the input and the residual
map between the input and the full-color counterpart. Moreover,
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Fig. 2. Color pattern in Bayer image classified by the centered pixel in a patch

they show results with inputs pre-estimated by different conventional
demosaicking methods. This results show the methods used in pre-
estimation have great influence for the network’s outputs. Gharbi et
al. [10] use not any pre-estimation methods but downsampling Bayer
image to pick up pixels in each color as the input. Before the last
hidden layer, they process upsampling for outputs of the previous
layer and add upscaled RGB frames to the input channels.

Hence, we should consider how we select the input for adaptation
of the neural network for demosaicking. In our method, we select
the Bayer image as it is for input. Although this seems a simple idea,
it is difficult for image demosaicking. In Bayer images, neighboring
pixels have different colors and the pixel values have no continuity.
However, as conventional methods utilize color difference or guided
upsampling, the pixels have some relationship. Therefore, we sup-
pose to take its full advantage and decide the Bayer image as it is for
input.

3. PROPOSED METHOD

In Bayer images, each pixel has a color value, red or blue or green.
Moreover, green pixels are divided into two patterns by the color of
neighboring pixels. Namely, we can divide pixels in a Bayer image to
the four patterns as shown in Fig. 2. For adaptation of Bayer images
as input, we pay attention to the patterns. Although CNN can approx-
imate various transformation, it is a local processing such as local
filtering. We think different patterns need different filters. Therefore,
we decide to prepare four networks corresponding to the four patterns.
For acquirement of higher accuracy, we consider not only the input
but also the output. Demosaicking is to estimate the missing two
colors at each pixel. However, we find to use chrominance images
instead of full-color images as the output leads our network to higher
accuracy. Moreover, estimation of each chrominance images also
needs different filters. Therefore, we prepare parts corresponding to
each chrominance images in our network architecture.

We show the architecture of our network in Fig. 3. Each part of
our network architecture is a simple linear one except for adoption
of a downsample process. In this section, we first introduce how to
calculate missing color values from the chrominance images obtained
by our networks. Then, we introduce the our network’s architecture.

3.1. Image Demosaicking via Chrominance Images

Chrominance images Cb, Cr are widely used in image compression.
In image compression, chrominance images are downsampled to re-
duce image capacity because our eyes more insensitive to the change
of chrominance image than luminance ones. We think this prop-
erty is useful in demosaicking and estimation errors in chrominance
outputs affect less influence than that in a RGB outputs. Therefore,
we adopt chrominance images as output of our networks to improve
the accuracy. However, the loss of the chrominance images at green
pixels estimated by our network is larger than that of at red and blue
pixels. Hence, we newly define a chrominance image Cg. First of
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Fig. 3. Outline of our network for each color pattern shown in Fig. 2. We
prepare additional three networks which have almost same architecture cor-
responding to other color patterns. The difference of these networks is where
coordinates we remain in downsample.

all, the chrominance images Cb, Cr has the property as follows.

R = Y + 1.4020Cr, B = Y + 1.7720Cb (1)

We define Cg with same property as follows.

G = Y + aCg = 0.2990R + 0.5870G + 0.1140B + aCg (2)
Cg = bR + 0.5G + cB (3)

By (2) and (3), we obtain the following identical equation.

G = (0.2990 + ab)R + (0.5 + a)G + (0.1140 + c)B (4)

By the identical equation, we get (a, b, c) and

Cg = −0.3620R + 0.5G − 0.1380B (5)

Hence, luminance image Y, and chrominance images Cb, Cr and Cg
are calculated from their counterpart of a full-color RGB image as
follows. Y

Cb
Cr
Cg

 =

 0.2990 0.5870 0.1140
−0.1687 −0.3313 0.5

0.5 −0.4187 −0.0813
−0.3620 0.5 −0.1380

[ R
G
B

]
. (6)

For image demosaicking, we calculate missing color values in each
pixel by estimated chrominance images. When we calculate X value
at Y pixel (X and Y are R(red), G(green) or B(blue) ), we utilize
the chrominance values Cx and Cy. For example, we calculate the
missing G value GR at a R pixel by Cr and Cg. Namely,[

Y
Cr
Cg

]
=

[
0.2990 0.5870 0.1140

0.5 −0.4187 −0.0813
−0.3620 0.5 −0.1380

][
R

GR
B

]
.

(7)
By solving the simultaneous equation, we get the following equations.

GR = R + 0.8260Cg − 1.4020Cr (8)

In the same way, we estimate the missing values as follows. .

BR =R + 1.7720Cb − 1.4020Cr (9)
RG =G + 1.4020Cr − 0.8260Cg (10)
BG =G + 1.7720Cb − 0.8260Cg (11)
RB =B + 1.4020Cr − 1.7720Cb (12)
GB =B + 0.8260Cg − 1.7720Cb (13)

where XY is the missing X value at a Y pixel.
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3.2. Network Architecture

Our network is composed three independent parts to estimate Cb,Cr
and Cg. Each part has (M + N + 1) convolutional layers and one
downsampling operator. Every convolutional layer except the final
layer is composed of convolution operator with an activation function
and batch normalization operator as follows.

Lt(c) = f

(
g

(
bt(c) +

mt−1∑
c′=1

wt(c, c′) ∗ Lt−1(c′)

))
(14)

where Lt(c) is the c-th channel in the t-th layer, wt(c, c′) and bt(c)
is its two-dimensional convolution filter and scalar bias, f(·) is the
activation function, g(·) is the batch normalization operator, and
mt−1 is the number of channel in the (t − 1)-th layer. In the former
M layers, we process this operation with 5 × 5 sized filters for
every pixel in the input image with ReLU operator f(·) = max(0, ·)
as the activation function. In the latter N layers, we process this
operation with 3 × 3 sized filters for only the coordinates of pixels in
a color pattern. The activation function of the N layers but the last
is ReLU operator and that of the last is hyperbolic tangent function.
The connection of the M layers and the N layers is the following
downsample operator that downsamples each feature map by a factor
of 2 in vertical and horizontal dimensions.

L′
M (i, j) = LM (2i − xn, 2j − yn) (15)

where L′
M is the output of this operator and it is also the input of

the M + 1 layer and (xn, yn) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} select
each pattern shown in Fig. 2. This process picks up the coordinates
of pixels in a color pattern. After the M + N layers, we obtain the
final output y by the following convolutional operation with 5 × 5
sized filters.

y =

(
b +

mM+N∑
c′=1

wc′ ∗ LM+N (c′)

)
(16)

where b is the scalar bias for the final layer and wc′ is a two-
dimensional convolution filter. In our network, the output y cor-
responds to Cb,Cr or Cg.

Finally, we prepare four networks corresponding to the color pat-
terns. These networks have the same architecture expressed in this
section but different parameters. These four networks are indepen-
dent and possible to parallel processing. Moreover, our network has
the independent parts to estimate Cb,Cr and Cg, which is also possi-
ble to parallel processing. Therefore, our method is very suitable for
parallel computing.

3.3. Training Procedure

We express the learnable parameters of each part to estimate Cb, Cr
and Cg image as ΘCb

n , ΘCr
n , ΘCg

n in the i-th pattern of the centered
pixels in Fig. 2, respectively. These parameters are set as follows.

ΘCb
n = argmin

ΘCb

∥∥yCb
n − Fn(xi; ΘCb)

∥∥ (17)

ΘCr
n = argmin

ΘCr

∥∥yCr
n − Fn(xi; ΘCr)

∥∥ (18)

ΘCg
n = argmin

ΘCg

∥∥yCg
n − Fn(xi; ΘCg)

∥∥ . (19)

where Fn(·) is the network for the centered pixel pattern. We
represent yCb, yCr, yCg

i are the Cb,Cr and Cg image transformed
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Fig. 4. Outline of our network for G1 color pattern shown in Fig. 2 in “Method
1”. We prepare additional three networks which have almost same architecture
for the other patterns. The difference of “Method 1” and “Method 2” shown
in Fig. 3 is only the outputs.

Fig. 5. 24 images sized 768 × 512 in Kodak database.

from the full-color version of the input bayer image x, respectively.
yCb

n , yCr
n , yCg

n is a downsampled one to pick up the centered pixel
pattern in the same manner as (15). Namely,

yCb
n (i, j) = yCb(2i − xn, 2j − yn) (20)

yCr
n (i, j) = yCr(2i − xn, 2j − yn) (21)

yCg
n (i, j) = yCg(2i − xn, 2j − yn) (22)

4. EXPERIMENTAL RESULTS

To assess our algorithm, we compare our method with some con-
ventional methods. In this test, there are eight comparative meth-
ods [2–6, 8, 10]. Bicubic [2] is a famous image interpolation algo-
rithm for gray scale images and we process it for each color space
independently. GBTF [3] utilizes color differences between R and G
or B and G. MLRI [4],FDRI [5],ARI [6] utilize residual interpolation.
DDR and FR are proposed in [8]. These are learning-based meth-
ods. As an example of neural network based methods, we compare
Gharbi’s method [10]. Learning based methods are depended on the
training datasets. Fortunately, we get authors’ weights and codes for
these learning based methods. Moreover, to assess the learning by
chrominance images, we show two proposal methods as “Method
1” and “Method 2”. The difference of these methods are only the
output. Method 1 uses missing color images as output and we show
the outline in Fig. 4. Method 2 is the proposed method mentioned in
this paper.

As testing datasets, we use 24 color images sized 768 × 512 in
Kodak datasets shown in Fig. 5 and 18 color images sized 500 × 500
in McMaster datasets shown in Fig. 6. As training datasets of our
networks, we use the Waterloo Exploration database (WED) [13]
and the Food-101 datasets [14]. The WED has 4744 images and we
utilize them. The Food-101 datasets has 101 food categories and
we pick up 50 images from each categories randomly. Eventually,
we use 10244 color images in training. In this test, we use same
hyperparameters for both proposed methods. We set the number of
hidden layers of the former layers of our network M to 2 and that of
the latter layers N to 10 and the number of each channel mt set to
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Table 1: Comparison on restoration results in PSNR[dB]. BOLD is the highest result of the eight methods.

PSNR Kodak McM Kodak+McM
R G B CPSNR R G B CPSNR R G B CPSNR

Bicubic [2] 29.33 33.50 29.23 30.28 32.40 36.21 31.60 32.90 30.65 34.66 30.24 31.40
GBTF [3] 39.68 43.34 40.01 40.62 33.98 37.34 33.07 34.38 37.24 40.77 37.04 37.95
MLRI [4] 38.62 41.18 38.48 39.21 36.72 40.23 35.59 36.91 37.80 40.77 37.24 38.23
FDRI [5] 37.31 39.12 37.15 37.74 36.92 40.17 35.54 36.99 37.14 39.57 36.46 37.42
ARI [6] 39.35 42.43 39.14 40.00 37.47 40.68 36.22 37.61 38.54 41.68 37.89 38.97
DDR [8] 40.18 43.93 40.39 41.10 37.12 40.35 35.64 37.17 38.87 42.39 38.35 39.42
FR [8] 40.19 43.85 40.34 41.07 37.50 41.01 35.82 37.49 39.04 42.63 38.41 39.54

Gharbi’s [10] 40.09 42.98 39.47 40.56 37.72 40.48 36.54 37.88 39.07 41.91 38.22 39.41
Method 1 39.79 44.25 39.87 40.69 37.88 41.19 36.29 37.90 38.97 42.94 38.34 39.50
Method 2 41.29 44.79 40.73 41.88 38.53 41.30 36.40 38.18 40.11 43.30 38.88 40.30

128 at the former and 100 at the latter. Namely, the number of layers
in the whole network is 13. We use Adam solver [15] to optimize the
network parameters and set the number of iteration to 200,000.

We show the average PSNR in every RGB image and CPSNR
in Table 1. Compared to conventional methods, Method 2 has the
highest PSNR in almost all colors and CPSNR in both datasets.
On the other hand, Method 1 has equivalent PSNR to conventional
learning-based methods. This is the effect of chrominance learning.
We show some restoration outputs in Fig. 7 and Fig. 8 as comparison
with conventional methods. In Fig. 7, there is a texture region. In
this region, conventional methods cause false colors but our methods
can reduce them. In Fig. 8, there is an edge and some high frequency
components. In this region, conventional methods cause not only
false colors but also blurs. Our methods keep the high frequency
components without false colors. In subjective evaluation, we cannot
find some difference between the outputs of Method 1 and Method
2. In other words, using our CNN networks for image demosaicking
can suppress false colors. Moreover, chrominance learning make
natural color values and Method 2 has more PSNR than Method 1.
Compared with Gharbi’s method, Method 2 improves at least 1dB
from [9] in every color and CPSNR with Kodak dataset. As the
comparison with Gharbi’s method, we show results for two images in
Fig. 9 and Fig. 10. Fig. 9 is prone to moire. In this area, both [10] and
our methods can obtain restored image without moire. Fig. 10 has
visual difference between [10] and our method. This is the effect for
adoption of Bayer images without any interpolation and preparation
for every color pattern.

5. CONCLUSION

In this paper, we propose a CNN-based image demosaicking method.
In this research, we consider not only architecture but also the input
and the output. There are three contributions in the new algorithm.
First, we use the Bayer image as input without any interpolation.
Second, we prepare networks corresponding to four color patterns.
Third, we use chrominance images as output and calculate missing
R,G or B values by known color value and the estimated chrominance
images. By these points, our method obtains much higher quality
demosaicking compared to conventional methods. Compared with
another neural network based method, our method can higher ac-
curacy and restore natural images. Moreover, the downsampling
operators to pick up the pixels in a color pattern reduce the size of
feature maps. It leads to reduction of the calculation cost in each
network. These networks are independent and each network has in-
dependent parts which is also possible to parallel processing. Hence,
our method has not only high accuracy but also high suitability for
parallel computing.

This algorithm is useful for adaptation for demosaicking of CNN.

Fig. 6. 18 images sized 500 × 500 in McMaster database.

(a) original (b) ARI [6] (c) FR [8] (d) Method 1 (e) Method 2

Fig. 7. The parts of result images with conventional methods from an image
in the Kodak database.

(a) original (b) ARI [6] (c) FR [8] (d) Method 1 (e) Method 2

Fig. 8. The parts of result images with conventional methods from an image
in the McMaster database.

(a) Original (b) Gharbi [10] (c) Method 1 (d) Method 2

Fig. 9. Comparison of our methods and the neural network based method [10]
with an image in the Kodak database.

(a) Original (b) Gharbi [10] (c) Method 1 (d) Method 2

Fig. 10. Comparison of our methods and the neural network based method
[10] with an image in the McMaster database.
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