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ABSTRACT

Rotation and scale estimation of images are fundamental tasks in

image registration. The conventional estimation method uses log-

polar transform and 1D shift estimation to estimate rotation and scale

regardless of the shift of images. However, this transform requires

interpolation of the frequency components, which causes estimation

error. We propose a rotation and scale estimation algorithm based

on Radon transform and sub-pixel shift estimation. Radon transform

can estimate the rotation independent of the shift and can reduce the

influence of interpolation error because it is performed on the spatial

image rather than the frequency. In addition, sub-pixel shift estima-

tion using linear approximation of the phase component improves

the precision of 1D shift estimation and achieves accurate rotation

estimation. The proposed method was evaluated on test images, and

the results demonstrate that the proposed method accurately esti-

mates rotation compared to log-polar-based and other conventional

methods.

Index Terms — Image registration, Rotation estimation, Scale

estimation, Phase only correlation

1. INTRODUCTION

With the recent advancements in hardware technology, processing

huge volumes of image and video data has become common. Image

registration, which matches two or more images, is an important

technology. These images are taken from, for example, video frames,

different cameras, or different viewpoints, and image registration can

be used in many applications, such as medical image analysis, object

recognition, and industrial vision.

The fundamental task in image registration is to estimate the shift,

scale, and rotation between two images. Conventional approaches for

rotation and shift estimation are categorized by phase-only correla-

tion (POC) approaches [1–5], intensity-based registration [6, 7], and

feature-based registration [8]. The intensity-based image registration

proposed by Thevenaz et al [9, 10]. A typical intensity-based algo-

rithm maximizes Mattes’ mutual information [6] using step gradient

descent or a one-plus-one evolutionary algorithm [7].

The feature-based approach extracts the speeded-Up robust fea-

tures (SURF) [11] or binary robust invariant scalable keypoints

(BRISK) [12] and estimates a transform matrix using existing meth-

ods [8, 13, 14]. The intensity-based approach compares two images

by plain and achieves high precision if the rotation angle is small

and the scale is close to 1. However, to estimate a large angle or

scale, the number of iterations required to calculate the optimiza-

tion problem increases, and an incorrect estimation may be obtained

because of a local solution. The feature-based approach depends

on the number of features extracted from the images and the pre-

cision of the point-to-point estimation of features. Therefore, the

precision of the feature-based approach is reduced when a small

number of feature points are extracted or incorrect matching occurs

in point-by-point estimation. POC is a common method for image

shift estimation [1,2] that calculates the cross-power spectrum of the

frequency of two images. The image shift is represented as the peak

of this spectrum, and shift estimation is achieved by searching this

peak. To estimate the rotation, a method that combines a log-polar

transform and 1D POC has been proposed [3,15,16]. These methods

translate the frequency of the image into a polar coordinate. The

image rotation is represented as a horizontal dimensional shift in

this coordinate. Note that the amount of shift does not depend on

the scaling or spatial shift of the image. On this basis, the rotation

estimation is achieved by estimating the horizontal shift by the 1D

POC. However, log-polar transform must approximate the frequency

components using an interpolation algorithm, and the approximation

precision deteriorates significantly in high-frequency components,

which results in low precision for the estimated rotation.

We improve the accuracy of the rotation estimation by introduc-

ing a new algorithm based on spatial Radon transform and sub-pixel

estimation in the phase domain. In the proposed method, input

images are transformed by Radon transform. As well as log-polar

transform, the rotation of the image is represented as a horizontal

shift. On this bases, we estimate the degree of rotation by estimat-

ing the shift on the transformed images. Radon transform can be

calculated in the spatial domain, and interpolation of the frequency

component is not required. In addition, Radon transform sums all

pixels along the specified angle, which reduces the error caused by

interpolating the image pixels. Furthermore, we introduce a high-

accuracy shift estimation based on the linear approximation of the

phase component. Conventional algorithms search the peak of the

POC by fitting a model function. In the estimation of discrete images,

the precision of this search is limited to the integer. The proposed

approach estimates the shift by linear approximation of the phase

component. This method enables estimation of the non-integer part

of the shift, which improves the precision of the sub-pixel shift.

We present an evaluation of the proposed method using standard

images with different rotations and scales. The comparison of the

estimation errors demonstrates that the proposed method achieves

correct shift estimation for the degree of the scale and rotation. In

addition, the results indicate that the proposed method is robust com-

pared to feature-based and intensity-based approaches.

2. PREVIOUS ALGORITHM

2.1. Rotation and scale in log-polar transform

We define image XF (x, y) and its translation XG(x, y) using scale

factor S, shift (δx, δy), and rotation angle θ0 as follows:
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Fig. 1. Peak expression in the POC and its approximation by sinc function

XG(x, y) = XF (Sx cos θ0 − Sy sin θ0 − δx,

Sx sin θ0 + Sy cos θ0 − δy). (1)

Both the images are translated to the frequency domain by Fourier

transform.

FG(ωx, ωy) =
1

S2
FF

(

ωx

S
cos θ0 −

ωy

S
sin θ0,

ωx

S
sin θ0 +

ωy

S
cos θ0

)

e−j(ωxδx+ωyδy)
(2)

Here FF and FG denote the 2D Fourier transform of XF and XG

respectively. Log-polar transform is defined as the coordinate trans-

lation of expressions FF and FG to log distance ρ and angle θ. In

other words, ρ and θ are defined by ωx and ωy as follows:

ρ = log
(

√

ω2
x + ω2

y

)

, θ = tan−1(ωx/ωy). (3)

We express F (ρ, θ) as the log-polar transform of FF and G(ρ, θ)
as the log-polar transform of FG. Using these expressions, the

relationship of the scaling and rotation (2) is rewritten by the shift in

the ρ and θ directions respectively.

|G(ρ, θ)| =
1

S2
|F (ρ − log S, θ + θ0)| (4)

2.2. Shift estimation using phase-only correlation

On the basis of the relationship given by (4), the image scale and

rotation are obtained by estimating the 1D shift. To estimate the

rotation θ0, ρ is fixed to 0. Here, we use F (θ) and G(θ) to express

F (ρ, θ) and G(ρ, θ), respectively, with fixed ρ. Note that rotation θ0

satisfies the following relationship:

G(θ) = F (θ + θ0). (5)

The major shift estimation algorithm uses POC. The POC of F (θ)
and G(θ) is calculated as follows:

R(θ) = F−1

(

F(F (θ)) ◦ F(G(θ))∗

|F(F (θ)) ◦ F(G(θ))∗|

)

. (6)

Here, F(·) denotes the 2D Fourier transform of the matrix, F−1(·)
is the inverse 2D Fourier transform, ◦ is element-wise matrix mul-

tiplication (division is also calculated in an element-wise manner),

and F(G)∗ is the complex conjugate of F(G).

POC R(θ) has a peak according to the shift of the images. Figure

1(a) shows the POC characteristics, where the blue line represents the

POC with a peak according to the shift (the yellow line). To search

the best location of the peak, POC R(θ) is fitted to a shift of the sinc

function.The approximation result of the sinc function is shown as

the red line in Fig. 1 (b). In addition to the rotation, scale S can

be estimated by fixing θ and fitting the 1D POC between F (ρ) and

G(ρ).

In practice, log-polar transform is conducted on the discrete

image; therefore, the value of angle θ is quantized into the multiply

of the step θstep. In the discrete expression, the precision of the non-

integer shift is limited if the estimation is given by fitting the POC to

the model function because the true peak of the POC may not appear

in the discrete expression and the peak of the model function does

not match the peak of the POC.

3. PROPOSED METHOD

Log-polar transform is the translation of image frequency FF (ωx, ωy).
This transform requires interpolation of the image frequency to obtain

the specified frequency component F (ρ, θ); however, interpolation

of the frequency component causes a large error, particularly in the

high-frequency component. To suppress this interpolation error, we

propose a new rotation estimation algorithm using Radon transform.

3.1. Radon-transform-based rotation and scale estimation

The Radon transform F (ρ, θ) of image XF (x, y) is calculated by

summing all pixels along angle θ.

F (ρ, θ) =

∫

∞

−∞

XF (ξ cos θ − ρ sin θ, ξ sin θ + ρ cos θ) dξ (7)

Similarly, Radon transform G(ρ, θ) is calculated from XG(x, y). In

Radon transform F , G, shift (δx, δy), scaling S, and the rotation θ0

become

G(ρ, θ) =

1

S
F

(

Sρ −
√

δ2
x + δ2

y sin
(

θ − tan−1 δy

δx

)

, θ + θ0

)

. (8)

This equation means that the rotation of two images is expressed as

the 1D shift for the θ direction. Here, the rotation is expressed as 1D

scaling for the ρ direction. Using this feature, we estimate rotation

θ0 using the 1D shift estimation algorithm. Note that the estimation

based on Radon transform does not depend on scale factor S and shift

(δx, δy); therefore, we adjust shift (δx, δy) by shifting the centroids

of the images and calculate the Radon transform at ρ = 0. We obtain

F (0, θ) and G(0, θ). If we express F (0, θ) and G(0, θ) as F (θ)
and G(θ) respectively, the rotation estimation can be expressed as

follows:

G(θ) = F (θ + θ0) (9)

The proposed Radon transform uses spatial image XF (x, y)
rather than its frequency F(ωx, ωy). This eliminates the need to

interpolate the frequency components. In addition, Radon transform

adds all pixels along the specified angle θ. This operation reduces

the influence of interpolation error that occurs in the points that are

distant from a pole.
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Fig. 2. Linear approximation for the phase of non-integer shift

3.2. Sub-pixel shift estimation by linear approximation of the

phase component

As discussed in Section 2.2, the precision of the non-integer part of

shift θ0 given by POC is uncertain. To improve the estimation of the

non-integer shift, we introduce a non-integer shift estimation based

on linear approximation of the phase component. We express the

phase component of the correlation of F (θ) and G(θ) as C(k).

r(k) =
F(F (θ)) ◦ F(G(θ))∗

|F(F (θ)) ◦ F(G(θ))∗|
, C(k) = tan−1 ℑ(r(k))

ℜ(r(k))
(10)

ℜ(·), ℑ(·) denote the real and imaginary parts of the content, respec-

tively. The correlation C(k) can be approximated by the following

linear expression:

C(k) ≃ a · k (11)

Thus, the coefficient a can be estimated by the following linear re-

gression.

a = argmin
a

∑

k

(C(k) − a · k)2
(12)

However, the output range of tan−1 in (10) is limited to the range

[−π, π]. As a result, C(k) becomes the wrapped form shown in Fig.

2 (a). To address this issue, we split phase component C into an

integer component C′ and a decimal component C′′.

C′(k) ≃ a′k, C′′(k) ≃ a′′k (13)

C(k) = C′(k) + C′′(k) (14)

A diagram of the shift estimation splitting the integer and non-integer

components is shown in Fig. 3. First, we estimate integer component

a′ by searching the peak of the conventional POC. Then, we subtract

the phase of the integer shift from C(k). We then obtain the phase

of the decimal component C′′(k).

C′′(k) = C(k) − a′k (15)

Note that this expression does not contain the wrapping effect as

shown in Fig. 2 (b). By modifying the minimization (12) to the

estimation of the non-integer part, we obtain the minimization of a′′

as follows:

a′′ = argmin
a

∑

k

(

C′′(k) − a · k
)2

(16)

By combining integer shift a′ and non-integer shift a′′ from (16), we

obtain image rotation θ0 as follows:

θ0 = aθstep = (a′ + a′′)θstep (17)

angle 𝜃
Fixed Signal

Shifted Signal

Calculate𝐶(𝑘)

Integer

POC

Estimation

Integer Shift𝑎′
Subtract Integer

Component

Estimate
Non-integer Shift

Slope 𝑎′′
Add Integer

Component

Estimated

Rotation𝜃 = 𝑎𝜃step

Shift𝑎
Fig. 3. Sub-pixel shift estimation for the Radon transformed axis

3.3. Radon-transform-based scale estimation

Using the rotation estimation described in the previous section, we

obtain the Radon transform of the image with adjusted rotation.

G′(ρ, θ) = G(ρ, θ − θ0) =
1

S
F (Sρ, θ)

We can obtain scale factor S by calculating the ratio of coordinates

whose values exceed a specified threshold. In other words, we ex-

press ρF 1 as the first coordinate whose value F (ρF 1, θ) exceeds the

threshold and ρF 2 as the last coordinate where F (ρF 2, θ) exceeds

the threshold. Similarly, we express ρG1, ρG2 for the coordinate of

G(ρ, θ). The estimate of the scale is obtained as follows:

S ≃
ρG1 − ρG2

ρF 1 − ρF 2
(18)

To reduce interpolation error and calculation cost, we use the ρ-axis

of the Radon transform in θ = 0◦ and θ = 90◦. Note that we selected

transform angles θ = 0◦ and θ = 90◦ because Radon transform can

be calculated with less interpolation error with these angles.

4. EVALUATION

4.1. Experimental settings

To evaluate the proposed algorithm, we compared rotation and scale

estimation for standard images. The images were rotated and scaled

with a specified angle and scale value. Then, the estimation algorithm

was applied, and the error between the estimated and ground-truth

values was calculated. In this evaluation, we used 14 images with

size 256 × 256 and 11 images with size 512 × 512. To compare the

precision of the rotation estimation algorithm, images were rotated

from 0◦ to 45◦ at steps of 0.2◦. In addition, scales of 0.6, 0.8,

and 1.0 were tested. When we compare scale estimation precision,

the input rotation was fixed at 35◦ and the input scale was varied

from 0.6 to 1.0 at a step of 0.01. To evaluate estimation robustness,

white Gaussian noise was added to the fixed and shifted images.

The standard deviation of the Gaussian noise was σ = 0 (no noise),

σ = 10, and σ = 20. We compared the proposed algorithm to the

conventional estimation algorithm, two feature-based algorithms, i.e.,

SURF [11] and BRISK features [12], the intensity-based algorithm

using Mattes’ mutual information [6], and the POC-based algorithm

using log-polar transform [3].

4.2. Rotation estimation error

Table 1 shows the rotation estimation errors for each scale. Note that

the errors of all images are averaged. The proposed Radon-based

method yielded higher precision, particularly with small-scale im-

ages. The results demonstrate that the proposed method can estimate
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Table 1: Comparison of average errors of rotation estimation for all images

Size Scale SURF BRISK Intensity Log-
polar

Proposed

0.6 0.6768 0.6539 1.0726 0.4792 0.0901

256 0.8 0.2257 0.1735 0.6262 0.3355 0.0725

1.0 0.0945 0.0669 0.3128 0.1615 0.0687

0.6 0.1205 0.1116 1.0361 0.4830 0.0849

512 0.8 0.0594 0.0866 0.7625 0.3168 0.0818

1.0 0.0286 0.0258 0.4031 0.2707 0.0786

Average 0.2252 0.1879 0.6964 0.3382 0.0790
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Fig. 4. Rotation errors for the rotation estimation of Milkdrop image (scale
0.6)

Table 2: Comparison of average errors of rotation estimation for noisy images
with a standard deviation of 10

Size Scale SURF BRISK Intensity Log-
polar

Proposed

0.6 0.7669 1.3115 1.0359 0.4837 0.1378

256 0.8 0.2624 0.3361 0.6157 0.3487 0.1236

1.0 0.1224 0.1224 0.3244 0.2150 0.1192

0.6 0.1250 0.1339 1.0271 0.4140 0.1106

512 0.8 0.0701 0.0744 0.7559 0.3063 0.1067

1.0 0.0371 0.0402 0.4248 0.2726 0.1060

Average 0.2590 0.1847 0.6901 0.3417 0.1191

rotation regardless of scale. In addition, the proposed method out-

performed the log-polar and feature-based methods, i.e., SURF and

BRISK.

The rotation estimation errors for the Milkdrop image (scale

0.6) are shown in Fig. 4. As can be seen, BRISK features achieve

the higher estimation precision than SURF features. However, the

number of BRISKs tend to be small, and estimation fails if the

number of keypoints is less than three. The intensity-based method

estimates with the lower error under 15◦; however, estimating larger

angles is difficult, and an inappropriate local solution produces a

large estimation error.

Table 2 compares the rotation estimation errors for the noisy

images (standard deviation σ = 10). As can be seen, the proposed

method achieves rotation estimation that is robust against noise, and

feature-based methods return large estimation errors because of the

small number of feature points.

4.3. Scale estimation error

The scale estimation errors rotated by 35◦ are compared in Table 3.

These results demonstrate that the proposed Radon-based transform

can estimate the image scale with less error compared to feature-based

and intensity-based methods, particularly when the image size is 256.

The proposed method takes the average of two scale estimations to

reduce the estimation error, which improves estimation precision for

images of size 512. Figure 5 compares the scale estimation errors for

the Milkdrop image. The proposed algorithm demonstrates higher

estimation precision when the input scale is in the range of 0.6 to 0.7.

Table 3: Comparison of scale estimation errors for images rotated by 35
◦.

Size SURF BRISK Intensity Proposed

256 0.00361 0.00237 0.27234 0.00174

512 0.00098 0.00088 0.27073 0.00092

Average 0.00240 0.00169 0.27160 0.00136
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Fig. 5. Comparison of errors of scale estimation for Milkdrop image with
rotation angle 35

◦

Table 4: Comparison of execution times for rotation and scale estimation

Size Scale SURF BRISK Intensity Log-
Polar

Proposed

256 0.6 0.0452 0.3161 0.8353 0.0214 0.0149

256 0.8 0.0427 0.4650 0.9745 0.0261 0.0150

256 1.0 0.0482 0.5050 1.0480 0.0363 0.0182

512 0.6 0.0874 0.4451 2.4960 0.0709 0.0311

512 0.8 0.0989 0.4477 2.8349 0.0871 0.0367

512 1.0 0.1230 0.4864 3.1434 0.1170 0.0471

In this range, it is difficult for the feature or intensity-based methods

to estimate the scale value accurately.

4.4. Execution time

We compared the compasiron of the execution times of the rotation

and scale estimation algorithms. All angles were evalluated from

0◦ to 45◦ in 0.2◦ steps, and the results were averaged. The rotation

and scale estimation for each image size (256 and 512) and for each

scale (0.6 to 1.0) are compared in Table 4. For all image sizes and

scales, compared to the conventional methods, the proposed method

demonstrates a faster execution time because the Radon transform

calculation is limited to three axes, and each estimation is processed

in 1D signals.

5. CONCLUSION

In this paper, we have proposed a rotation and scale estimation al-

gorithm based on Radon transform and sub-pixel shift estimation.

Radon transform can reduce the influence of interpolation error be-

cause it is applied to a spatial image rather than the frequency. The

number of ranges of Radon transform can be limited to ρ = 0,

θ = 0◦, and θ = 90◦, therefore, the proposed method has an advan-

tage relative to computational cost. As well as introducing the Radon

transform, we have proposed a sub-pixel shift estimation method that

uses linear approximation of the phase component, which enables an

accurate non-integer shift. In the proposed method, we have com-

bined the conventional POC method for the integer part of the shift

and linear approximation for the non-integer part. Evaluations using

test image demonstrate that the proposed method accurately estimates

rotation regardless of the degree of the input rotation, scaling, and

shifting. In particular, compared to other conventional approaches,

the proposed method realizes robust estimation when the input scale

differs from 1 or noise is added to the images.
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