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ABSTRACT

Multi-label image classification has achieved remarkable
progress thanks to deep convolutional neural networks (CNNs).
In this paper, we propose a Decouple Network (DecoupleNet)
which is an end-to-end CNN-based framework able to trade
off class-level feature independence and relevance during
training. The proposed DecoupleNet is able to decouple
category-wise independence and relevance with image-level
supervision. We design a category-wise space-to-depth mod-
ule with a spatial pooling strategy to exploit more meaningful
convolutional features. They are integrated with class-wise
correlated information which is automatically learned via a
new self-attention mechanism. We conduct extensive ex-
periments on two large-scale benchmarks: the MS-COCO
and the NUS-WIDE, where the proposed DecoupleNet ob-
tains impressive performance compared favorably against the
state-of-the-art methods on multi-label image classification.

Index Terms— Multi-label image classification, self-
attention, convolutional neural network

1. INTRODUCTION

Great successes have been achieved in image classification,
due to the rapid development of deep convolutional neural
networks (CNNs) [1, 2, 3]. Existing works mainly focus on
single-label image classification problem by learning to as-
sign a single class label to an image. However, for multi-label
image classification task, an image often contains a set of la-
bels with arbitrary number. Generally, multi-label classifica-
tion can be transformed into a multiple binary classification
problem. To explore the strong representation capability of
CNNs, recent approaches aim to learn an end-to-end trainable
model for multi-label classification. A straightforward ap-
proach is to fine-tune a typical image classification model for
learning a set of class-wise binary classifiers. Besides, several
recent CNN-based approaches aim to add extra structure in
an effort to learn the relationship among various categories,
by designing recurrent neural networks (RNNs) [4, 5, 6, 7],
attention mechanism [8, 7], and ranking loss functions [9,
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10]. With the development of weakly-supervised learning
(WSL), a number of WSL-based methods [11, 12, 13] has
obtained promising performance on multi-label image classi-
fication. These methods can achieve reasonable results based
on the original CNN architectures, but the improvements were
marginal by simply fine-tuning CNNs as multiple binary clas-
sifiers. These approaches do not explicitly exploit class corre-
lation information, while deep networks are capable of mod-
eling such relationship implicitly. For example, CNN-based
binary classifiers can learn class relevance by using convolu-
tional filters which are applied to different channels. Adding
extra components to the original CNN architectures has po-
tential to improve the performance by learning stronger rela-
tionship between classes, but it would result in an increased
learning difficulty in training, and could inevitably cause in-
formation redundancy to some extent.

There has been a number of recent works focusing on
exploring correlations of deep features within CNN archi-
tectures [14, 15, 16, 8, 17, 18, 19]. For example, Network-
in-Network [20] uses standard convolutional filters to jointly
learn feature combinations. In [16], cross-channel correla-
tions are modeled by independent spatial structures. Further-
more, attention mechanism is widely-used to explore the cor-
relations of CNN features. In [8, 17], spatial correlations can
be modeled by learning a designed attention. Wang et al. [18]
proposed Residual Attention Networks by designing a stack-
ing attention model to learn attention-aware features, and Hu
et al. proposed Squeeze-and-Excitation Networks (SENet)
able to learn channel-wise attention maps that encode cross-
channel correlations [19]. Inspired by these approaches, our
goal is to design an automatic learning mechanism able to ex-
plicitly exploit the strong relationship between classes, rather
than the implicit category-wise relevance learned by the origi-
nal network itself. Both class-independent features and class-
correlated features are important to learning multi-label clas-
sifiers. The class-correlated information can be learned by
using attentional maps, and then improves multi-label clas-
sification performance when incorporated properly into the
class-independent features.

To this end, we propose a Decouple Network (Decou-
pleNet) which is an end-to-end trainable CNN-based ap-
proach that directly learns class independence and category-
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Fig. 1. The proposed Decouple Network includes (a) a main network ( black solid line), (b) an arch1 part, and (c) an arch 2
part. The arch1 and arch2 can learn class-wise relevance attention maps from the independent multiple features of categories
(green dotted line) and the backbone features (red dotted line), respectively.

wise relevance in the convolutional features. We introduce
a new self-attention mechanism that allows class indepen-
dence and relevance to work collaboratively in the multi-label
training process. We design a category-wise space-to-depth
module which is integrated seamlessly into the original CNN
framework. This allows us to preserve more detailed features,
and enhance class independence in the main network. In ad-
dition, upsampling and channel-wise convolution are applied
jointly to learn multiple feature maps for each class, which
enhances class independence. Finally, we conduct extensive
experiments and evaluations on two multi-label benchmarks:
the MS-COCO and the NUS-WIDE. Experimental results
show that our methods outperform existing state-of-the-art
methods. Visualization and analysis further demonstrate the
effectiveness of our methods comprehensively.

2. DECOUPLE NETWORK

Overview. The proposed Decomple Network is shown in Fig.
1. Our framework is composed of two sub-networks: a main
network and an attention sub-network. The main network
is able to learn class-independent features with image-level
supervision, and the attention sub-network has an attention
layer capable of learning the correlated relationship between
classes. We use a pre-trained backbone convolutional network
for feature extraction (which is also involved in training), and
then the convolutional features are encoded into class-wise
features for classification via the main network. Meanwhile,
the attention sub-network learns channel-wise attention maps,
which are then integrated into the class-wise features.

2.1. Main-Net for Enhancing Class-Wise Independence

We design a main network capable of enhancing class-
independent features in the convolutional layers. It consists of

an upsampling layer, a class-independent multi-map learning
layer and a category-wise max-pooling layer.
Upsampling Operation We introduce an upsampling oper-
ation to preserve more local detailed information in convo-
lutional maps, by increasing spatial resolution. The feature
maps are up-sampled via a 3×3 transposed convolutional ker-
nel. The input features are encoded into C channels, where
C is the number of classes via the upsampling layer. Each
channel preserves spatial details for each category.
Space-to-Depth Structure To further enhance class-wise in-
dependence, we design a class-wise space-to-depth encoder
structure. We apply a 3 × 3 channel-wise group convolution
that encodes each upsampled channel independently, and each
filter can only learns features from a specific channel. At the
same time, the spatial size of each feature is reduced. By this
operation, the spatial information is transformed into m mul-
tiple maps, and each map can represent different spatial fea-
tures. We apply a category-wise max-pooling for combining
the discriminative information among m class-wise feature
maps, and decode them into a single map with a same spa-
tial resolution. It transforms CNN features into C class-wise
convolutional features, allowing each category to focus on its
own channels, which enhance independence and discrimina-
tive power of the learned deep representation.

2.2. Attention Sub-Net for Relevance Learning

The attention sub-network is designed to decouple class-wise
independence and relevance. As shown in Fig. 1, we design
two optional decoupled operations. The first one is to learn
class relevance directly from the class-independent convolu-
tional features - category-wise multiple convolutional maps.
This allows the proposed self-attention layer to learn the class
relevance information from class-independent features, which
in turn compensate each other. The second one can learn class
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relevance from the backbone convolutional features, which
may be able to preserve more local detailed information in
the main network.
Self-Attention Learning It can be considered as a dynamic
re-weighting operation that automatically learns channel-
wise attention maps without additional supervision. Inspired
by SENet [19], we design an attention layer to model the
interdependencies between different channels of the convolu-
tional features. Specifically, the attention layer is composed
of a 1×1 convolution layer, a batch normalization layer and
a max-pooling layer. We use a global max-pooling with
Sigmoid to learn channel-wise attention maps. The pro-
posed self-attention layer adaptively models the class-wise
relevance, without any additional explicit supervision. To
integrate such class relevance and the learned class-wise
independence, we use a residual connection to encode the
learned attention maps into the convolutional features of the
main network. For input maps Xin, we can have

attn = U(Xin;W ), attn ∈ RC×1×1, (1)

Xcoupled = (1 + attn) · Z, Xcoupled ∈ RC×14×14 (2)

where U(·) is the attention layer. Xcoupled is the feature
maps coupled with the learned attention, and Z is the features
learned by the main-net.
Spatial Pooling To integrate the capabilities of max-pooling
and global average pooling, a spatial pooling method was pro-
posed in [12], where optional hyper-parameters are used to
average both positive and negative pixels in each feature map,

sc =
1

k+

∑
topk+pc

i,j

pci,j + α
1

k−

∑
topk−pc

i,j

pci,j (3)

where sc is the score of channel c, and pci,j is a pixel of the
c-th feature map Xcoupled. k+ is the number of pixels with
the highest values, and k− for the lowest values. By using
a Sigmoid layer, we obtain a final probability score for each
class. We apply a Binary Cross-entropy loss in the training.

3. EXPERIMENTAL RESULTS AND COMPARISONS

3.1. Evaluation Metrics

By following the standard evaluation metrics on multi-label
classification, we use mean average precision (mAP) in
VOC20121 to evaluate all methods. We employ a macro/micro
precision (PC /PO), a macro/micro recall (RC /RO) and a
macro/micro F1-measure (F1C /F1O). The “macro” means
that it is evaluated by averaging per-class metric values,
and“micro” indicates that it is an overall measure for all im-
ages. We empirically report the labels having a score over
0.5. Each input image is resized to 448 × 448. We set two
strong baselines by using ResNet101 [2] and WILDCAT [12],

1http://host.robots.ox.ac.uk/pascal/VOC/voc2012

Table 1. Results on the MS-COCO Dataset.
Method mAP P-C R-C F1-C P-O R-O F1-O
WARP - 59.352.5 55.7 59.861.4 60.7
CNN-RNN - 66.055.6 60.4 69.266.4 67.8
RLSD 68.2 67.657.2 62.0 70.163.4 66.5
RNN-RL - 78.857.2 66.2 84.061.6 71.1
OF-RNN (w/ attn) - 71.654.8 62.1 74.262.2 67.7
RNN-Attention 73.4 79.158.7 67.4 84.063.0 72.0
ResNet101-SRN 77.1 81.665.4 71.2 82.769.9 75.8
ResNet101-MEFF - 80.470.2 74.9 85.272.5 78.4
ResNet101(baseline) 77.8 80.765.9 71.8 84.371.0 77.1
WILDCAT 80.7 81.370.0 74.8 85.373.5 78.9
DecoupleNet(arch1) 81.7 82.970.8 75.6 85.073.5 78.8
DecoupleNet(arch2) 81.8 82.371.1 75.7 84.374.2 78.9
DecoupleNet(arch1+arch2) 82.2 83.171.6 76.3 84.774.8 79.5

Table 2. Results on the NUS-WIDE Dataset.
Method mAP P-C R-C F1-C P-O R-O F1-O
KNN - 32.619.3 24.3 43.953.4 47.6
Softmax - 31.731.2 31.4 47.859.5 53.0
WARP - 31.735.6 33.5 48.660.5 53.9
CNN-RNN - 40.530.4 34.7 49.961.7 55.2
RLSD 54.1 44.449.6 46.9 54.467.6 60.3
OF-RNN(w/ attn) - 59.450.7 54.7 69.071.4 70.2
ResNet101(baseline) 52.4 55.448.9 49.4 69.470.3 69.8
WILDCAT 52.3 52.451.5 50.6 70.069.2 69.6
DecoupleNet(arch1) 56.8 56.555.9 53.9 69.870.4 70.1
DecoupleNet(arch2) 56.9 59.054.0 53.9 70.870.0 70.4
DecoupleNet(arch1+arch2) 57.5 58.555.3 54.8 70.970.6 70.7

where WILDCAT is a weakly-supervised method for multi-
label classification and localization.

3.2. Results

MS-COCO [21] is a widely-used dataset with 80 objective
labels. The training set contains 82,787 images, and all ex-
periments are tested on the validation set which has 40,504
images. In addition to two baselines by using ResNet101
and WILDCAT, we further compare DecoupleNet with re-
cent state-of-the-art approaches, including WARP [9], CNN-
RNN [4], RLSD [22], RNN-Attention [7], RNN-RL [23],
OF-RNN [6], SRN [8] and MEFF [24]. Note that SRN
and MEFF use the same ResNet101 backbone as our mod-
els, while ResNet152 is used by OF-RNN as backbone.
The comparisons are summarized in Table 1. As can be
found, DecoupleNet outperforms the state-of-the-art methods
in most metrics on the MS-COCO. It has an improvement
of 1.5% mAP over the best baseline, WILDCAT. Specifi-
cally, both arch2 and arch1 can improve the performance of
ResNet101 baseline by a large margin - 4% mAP. The per-
formance of our ensemble model is significantly higher than
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labels: tower, skyperson remotelabels: person, remote
Similar label: cloudstower sky

grass buildings lake skyvalley

(a)

(b) (c)

labels: grass, house, buildings, 
valley, lake, water, sky house water

Fig. 2. Visualization of heat-maps for corresponding category-wise feature maps in image examples. The spatial localization
and tiny object are shown in (a) and (b). Conceptions as house and buildings, lake and water are shown in (a), even similar
semantic labels which are not included in the ground truth are learned as shown in (c).

that of ResNet101-based methods compared, leading to an
improvement of about 4% in the term of mAP.

NUS-WIDE [25] contains 269,648 images with 81 concepts
collected from Flickr. We use the official train/test split,
where 161,789 images are used for training, and 107,859
images are used for test. To further evaluate our methods,
we compares DecoupleNet with several state-of-the-art ap-
proaches, such as WARP [9], RLSD [22], CNN-RNN [4] and
OF-RNN [6]. As shown in Table 2, DecoupleNet can obtain
consistent performance improvements over the compared
approaches. Specifically, both the proposed architectures
outperform two baseline methods significantly with a large
margin of ∼4.5% mAP. Even the OF-RNN uses a deeper
backbone - ResNet152 , DecoupleNets are still compared fa-
vorably against it. An ensemble of arch1 and arch2 has clear
improvements in the term of mAP, F1-C and F1-O.

Table 3. Comparisons with/without class-wise relevance on
the NUS-WIDE via different backbones.

Method mAP
ResNet50 ResNet101

DecoupleNet (w/o attn) 56.0 56.4
DecoupleNet (arch1) 56.5 56.8
DecoupleNet (arch2) 56.5 56.9

Visualization We visualize convolutional feature maps of the
category-wise max-pooling layer to demonstrate the discrim-
inative regions learned by the proposed methods. As shown
in Fig. 2, the proposed method is able to learn rough attention
regions of the key category information in the corresponding
class-wise feature maps. It is also able to learn similar seman-
tic conceptions and class-wise correlations.

Table 4. Comparisons of different upsampling strategies on
the MS-COCO. arch1 and ResNet50 backbone are used.

Backbone Method mAP F1-C F1-O

ResNet50
Ours (w/o upsampling) 77.7 70.7 75.7
Ours (bilinear) 79.5 73.0 77.5
Ours (transposed conv) 80.0 73.7 77.4

3.3. Ablation Study

Impact of Attention Sub-Network We train our models by
removing the attention sub-network branch (without the class-
wise attention layer). In Table 3, it can be observed that im-
provement gains can be achieved on the NUS-WIDE when
the attention sub-network is applied, with an improvement of
about 0.5% mAP for two backbones.
Impact of Upsampling We further investigate different up-
sampling methods, such as transposed convolution, bilinear
upsampling, and evaluate the efficiency of the upsampling
layer in Table 4. The results demonstrate that the upsam-
pling operation is efficient, and the transposed convolution
performs better than the bilinear one.

4. CONCLUSION

We have presented new decouple networks for multi-label
image classification, where a novel category-wise space-to-
depth module with spatial pooling strategy is proposed to ex-
ploit more meaningful class-independent convolutional fea-
tures. Then we design an attention sub-network able to learn
the correlated relationship between classes via a self-attention
mechanism. Both components are integrated seamlessly into
a single end-to-end trainable model. The proposed Decou-
pleNet outperforms the state-of-the-art methods on the MS-
COCO and NUS-WIDE datasets, and visualization and anal-
ysis further confirm its effectiveness.
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