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ABSTRACT

Thumbnails are widely used all over the world as a pre-
view for digital images. In this work we propose a deep neural
framework to generate thumbnails of any size and aspect ra-
tio, even for unseen values during training, with high accuracy
and precision. We use Global Context Aggregation (GCA)
and a modified Region Proposal Network (RPN) with adap-
tive convolutions to generate thumbnails in real time. GCA
is used to selectively attend and aggregate the global context
information from the entire image while the RPN is used to
generate candidate bounding boxes for the thumbnail image.
Adaptive convolution eliminates the difficulty of generating
thumbnails of various aspect ratios by using filter weights dy-
namically generated from the aspect ratio information. The
experimental results indicate the superior performance of the
proposed model1 over existing state-of-the-art techniques.

Index Terms— Thumbnail generation, aspect ratio,
Global Context Aggregation, Adaptive Convolution, Region
Proposal Network.

1. INTRODUCTION

With an increasing number of digital images everyday, it is
a need to display images in any given space efficiently for
easy browsing. This is facilitated by the use of thumbnails
which are a smaller version of the original images that effec-
tively capture and represent the content of the original images.
Thumbnails are widely used in social media platforms and ap-
plications such as Image Gallery where the images are shown
within a fixed resolution display in an organized manner.

Earlier methods on thumbnail generation [1, 2, 3] employ
a two-stage framework which first predict a salient map spec-
ifying the importance of various regions and objects of the
input image and then use this for generating a crop for the
thumbnail image through a region search algorithm. It is im-
portant for the generated crop to be of same aspect ratio as that
of the target thumbnail, since any mismatch could lead to sig-
nificant distortions when scaling down the crop to thumbnail
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1The source code of the proposed system is publicly available at https:

//github.com/sairajk/Thumbnail-Generation

Fig. 1. An example of output generated by our model. The
original image is shown on the left with the generated thumb-
nails of different sizes and aspect ratios on the right.

size. Although [3] could crop images with a limited set of as-
pect ratios, it was mentioned it could be infeasible for a given
overall saliency threshold value. Other approaches like [4, 5]
attempt to crop the most aesthetic part of the image. Huang
et al. [6] were the first to address this problem with a direct
solution. They used manually selected features and SVM to
score a large set of candidate crops. The crop with largest
score was finally selected as the thumbnail. But their method
was slow and only considered thumbnails of fixed size. Es-
maeili et al. [7], proposed a fast thumbnail generation algo-
rithm inspired from an object detection framework (F-RCN
[8]) to predict bounding box coordinates of the thumbnail im-
age. They maintain a set of convolutional filter banks to gen-
erate thumbnails for a limited selection of aspect ratio values.

In this work, we propose a deep neural framework to gen-
erate thumbnails of any given size and aspect-ratio for an in-
put image in real time. We use Global Context Aggregation
(GCA) and a modified Region Proposal Network (RPN) [9]
with adaptive convolutions to generate thumbnails of vary-
ing sizes with high accuracy and precision. GCA selectively
attends and aggregates the contextual information from the
entire image at each context location, increasing the recep-
tive field of the model to the entire image and enhancing the
feature representability of the CNNs. A RPN is then used to
generate candidate bounding boxes for the thumbnail image.
The RPN uses adaptive convolutions where the filter weights
are dynamically generated from the aspect ratio of the thumb-
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Fig. 2. Architecture of the proposed model. The input image is passed through a Feature Extraction Network to generate F .
The global context is then selectively aggregated at each location to generate Fattn. A modified RPN is then used to generate
candidate bounding boxes and repsentativeness scores. The network is finally trained using Regression and Classification losses.

nail image. The adaptive convolution layer provides a smooth
manifold for the convolution filters to vary and is used to dis-
entangle the variations in shape of the bounding box predic-
tions with respect to aspect ratio. The smooth manifold for
convolution filters also allows us to interpolate and use un-
seen values of aspect ratio for thumbnails during inference.

In summary, we make the following two contributions :
(1) Our method can generate thumbnails of any size and as-
pect ratio efficiently, even for unseen values during training.
(2) Our method is fast and can generate thumbnails in real
time. It can process around 13 images per second on a GPU.

2. METHODOLGY

2.1. Global Context Aggregation (GCA)

Given a convolutional feature map, F ∈ RH×W×C , with
height H , width W and number of channels C, GCA aims
to generate an attention map at each location, over F to selec-
tively aggregate the global context information from the entire
image. We employ a recurrent approach, inspired from [10]
and [11], for this purpose. A pair of Bidirectional LSTMs
is used to scan the given feature map in horizontal and ver-
tical directions from the either ends to aggregate the global
context at each spatial location 〈h,w〉. We then apply con-
volution to generate an intermediate output Z ∈ RH×W×D,
whereD = H×W . Softmax operation is then applied to nor-
malize each of these D−dimensional vectors of Z and can be
represented as :

Z〈h,w,i〉
norm =

exp(Z〈h,w,i〉)∑D
i=1 exp(Z

〈h,w,i〉)
(1)

where i is the index along the depth of the convolution output
Z and Znorm is the normalized feature map. The features

at all positions in F are then weighted summed by Z〈h,w〉norm to
generate the attended contextual features Fattn ∈ RH×W×C :

F
〈h,w〉
attn =

D∑
i=1

Z〈h,w,i〉fi

norm (2)

where f i is the C−dimensional feature vector at the ith loca-
tion (row/column-wise) of F.

2.2. Adaptive Convolutional Layer

To address the difficulty of generating thumbnails of vari-
ous aspect-ratios, we make use of adaptive convolutions [12]
which model the filter weights as a low-dimensional mani-
fold, parametrized by the side information, within the high-
dimensional space of filter weights. In other words, the fil-
ter weights for adaptive convolution are generated dynami-
cally based on some side information (aspect ratio, in this
case). Hence, as the aspect ratio changes, the convolution
filter weights also changes accordingly. This eliminates the
need of aspect ratio-specific filter banks as used in [7], mak-
ing the same convolutional layer adaptive to various values of
aspect ratio for the thumbnail image. This allows us to dis-
entangle aspect ratio-specific outputs and also use unseen but
similar values of aspect ratio during inference.

Compared to a normal convolution layer where the filter
weights remain constant after training, the filter weights for
the adaptive convolution layer are dynamically generated by
a set of fully connected layers, called the Filter Manifold Net-
work (FMN), with progressively increasing number of neu-
rons and side information as input. The convolution filter
weights are generated by reshaping the output of the FMN
into a 4D tensor for convolution kernel and a 1D vector for
bias. The adaptive convolution layer is more formally defined
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by, Fadap = A(x ∗ g(z;w)), where x is an input image or
feature maps from a convolution operation, z is the side infor-
mation, g(.;w) is the filter manifold network with learnable
weights w and A(.) is the activation function.

2.3. Thumbnail Generation

We employ a two-step process for generating the thumbnail,
a bounding box with user defined aspect ratio is first pre-
dicted to crop the region of interest, the cropped image is then
rescaled to generate the thumbnail of desired size.

The input image is first passed through a series of con-
volutional layers, which act as a feature extractor network.
The extracted features, F, are then passed through a GCA
module to aggregate the global context information at each
location. These attended contextual features, Fattn, are then
passed on to a Region Proposal Network (RPN) to predict
candidate bounding boxes for the thumbnail image. The RPN
generates two outputs, bounding box coordinates and the cor-
responding representativeness scores at each spatial location
of the input feature map. The representativeness score de-
picts how well the corresponding bounding box represents the
original image. The RPN consists of a convolution layer with
3×3 kernel and 512 channels as output, followed by two par-
allel convolutions using 1 × 1 kernel and whose number of
output channels depend upon the number of bounding boxes
(anchors), k, predicted at each location. One branch of the
1 × 1 convolution generates bounding box predictions with
4k channels as output (〈xcenter, ycenter, width, height〉 for
each bounding box), whereas the other branch generates the
corresponding representativeness scores with k channels as
output (probability of the corresponding bounding box repre-
senting the original image). We modify the RPN, proposed
in [9], to generate the bounding box coordinates and the cor-
responding representativeness scores constrained by the user
defined aspect ratio for the thumbnail image. For this we use
adaptive convolutional layers where the filter weights are dy-
namically generated from the aspect ratio information. We
make the 1 × 1 convolution layers of the RPN adaptive, as
these are the layers which are finally responsible for gener-
ating the bounding boxes coordinates and representativeness
scores for the target thumbnail image.

We use the attended contextual features, Fattn, instead of
directly using the features, F, from the feature extractor net-
work for bounding box predictions. This is vital for a task
like thumbnail generation where the entire global context is
important for generating the thumbnail, as opposed to object
detection tasks where only the local neighborhood context is
important. GCA allows the RPN to look at the entire image
in a selective manner before making the bounding box pre-
dictions at each location and to assess how well the predicted
bounding boxes represent the original image (through repre-
sentativeness scores). GCA also allows us to use a lighter
feature extractor network (in contrast to ResNet-101 [13] used

in [7]) by increasing the receptive field, filtering information
(by attention) and enhancing the feature representabity of the
CNNs. As a result, GCA plays a crucial role in reducing the
memory footprint while improving the overall accuracy and
speed of the system.

We predict a total of 3 bounding boxes (i.e. k = 3), with
same aspect ratio but different scales (with box areas of 602,
1202 and 1802 pixels), at each context location of Fattn. The
aspect ratio is determined by the convolution kernel gener-
ated dynamically from the user input. We employ a similar
approach as used in [9] for training the network. We use re-
gression loss for bounding box predictions and classification
loss for the probability scores. The candidate bounding boxes
are first classified as ‘positive’ or ‘negative’ depending upon
their Intersection-over-Union (IoU) scores with the ground
truth bounding box according to the thresholds described in
[9]. We then randomly sample 256 candidate bounding boxes
to form a balanced mini-batch of positive and negative boxes.
It is used to calculate the classification loss (Lcls) using bi-
nary cross entropy. We then only use the positive bounding
boxes to calculate the regression loss (Lreg). For Lreg, we
use smooth L1 loss defined in [14]. The overall loss function
is given by,

L(p, b) =
1

Ncls

∑
i

Lcls(pi, p̂i) + λ
1

Nreg

∑
i

p̂iLreg(bi, b̂i)

(3)
where i is the index of the bounding boxes in the mini-batch
and pi is the predicted probability of bounding box being rep-
resentative of the original image. The ground-truth label p̂i
is 1 if the bounding box is positive, and is 0 if the bound-
ing is negative. The predicted bounding box coordinates are
represented by bi, and that of the associated ground truth box
by b̂i. The two losses are normalized by Ncls and Nreg and
are weighted by λ. During inference, the bounding box with
highest representativeness score is selected and rescaled to
generate the target thumbnail.

3. EXPERIMENTS

Implementation and Training details: For our experiments
we use the dataset released in [7]. The dataset contains a
total of 70,048 thumbnail annotations over 28,064 images
taken from the photo-quality dataset [15]. The dataset is split
into 63043 annotations (from 24,154 images) for training and
7,005 annotations (from 3,910 images) for testing. All images
are resized to have a maximum height of 650 and a maximum
width of 800 pixels. The size of the annotated thumbnails
vary from 32 to 200 pixels and the aspect ratio varies from
0.5 to 2.

The entire network is trained in an end-to-end manner su-
pervised by the loss function stated in Equation 3 with λ =
10. We use VGG-19 [16] as the feature extractor network
with weights initialized by pretraining the model for Ima-
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Fig. 3. Thumbnails generated by our model on the test set. The original image is shown on the left with the generated thumbnails
on the right. The query aspect ratio is given in blue and the aspect ratio of the generated thumbnail is given in red.

geNet classification [17]. The features, F, are extracted from
the conv5 4 layer of the VGG-19 network and all the lay-
ers upto conv5 4 are fine-tuned during training. All other
weights are initialized with values sampled from zero-mean
Gaussian distribution with standard deviation 0.05. We use
Adam Optimizer [18] for training with learning rate and mo-
mentum set to 0.001 and 0.9 respectively. The model is im-
plemented using the TensorFlow library and all experiments
are conducted on a single NVIDIA Tesla K80 GPU.

Baselines and Evaluation Metrics: Our model is com-
pared against the following 2 state-of-the-art image cropping
methods: Fast-AT [7] and Aesthetic Image Cropping (AIC)
[4]. Fast-AT maintains a set of aspect ratio-specific convolu-
tional filters to generate thumbnails of different aspect ratios.
Whereas [4] crops the most aesthetic part of the image irre-
spective of the target image aspect ratio. We use the follow-
ing evaluation metrics defined in [6] and [7] to compare our
model to others: Center offset (CO), Rescaling factor (RF),
Intersection over Union (IoU), Aspect ratio mismatch (ARM),
Hit Ratio (hr) and Background Ratio (br).

Performance Analysis: A quantitative comparison of the
proposed model to the other methods for various evaluation
metrics is shown in Table 1 and some qualitative results gen-
erated by our model are shown is Figure 1 and Figure 3. It is
evident from the results in Table 1 that our model achieves the
best results for all evaluation metrics and outperforms the ex-
isting state-of-the-art methods for thumbnail generation. We
observe a significant drop in ARM score which is attributed

Model CO RF IoU ARM hr br

AIC [4] 89.4 1.402 0.54 0.213 65.6% 43.1%
Fast-AT [7] 55.0 1.148 0.68 0.010 83.7% 37.1%

Ours 51.8 1.032 0.77 0.0013 87.6% 30.3%

Table 1. Evaluation Metrics evaluated on different thumbnail
generation methods.

to adaptive convolutions, which help us generate bounding
boxes with the given aspect ratio with high precision. Fast-
AT [7] works moderately well due discretized aspect ratio-
specific filters which approximate the target aspect ratio. Ae-
thetic Image Cropping [4] performs poorly as it aims to crop
the most aesthetic region of the image irrespective of the tar-
get aspect ratio.

4. CONCLUSION

In this work, we proposed a deep neural framework to gen-
erate thumbnails of variable aspect ratios, even for unseen
values during training, with high accuracy and precision. We
used Global Context Aggregation and a modified Region Pro-
posal Network with adaptive convolutions to generate state-
of-the-art results for automatic thumbnail generation. The
proposed model is fast, efficient and can be extended to other
similar photo cropping tasks easily.
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