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ABSTRACT

Moments are a kind of classical feature descriptors for im-
age analysis. Orthogonal moments, due to their computation
efficiency and numerical stability, have been widely devel-
oped. We propose a set of orthogonal polynomials which are
derived from the parity of Hermite polynomials. The new
orthogonal polynomials are composed of either odd orders
or even ones of Hermite polynomials. They, however, are
orthogonal in different domains. The corresponding orthog-
onal moments, Hermite-Fourier moments are defined. The
computation strategy for these new moments is formulated in
addition. Image reconstruction in comparison with Zernike
moments as well as Fourier-Mellin moments shows the better
image representation ability of the proposed moments.

Index Terms— Orthogonal polynomials, Hermite-Fourier
moments, image reconstruction, parity of polynomials, nu-
merical integration

1. INTRODUCTION

Feature plays a fundamental role in image processing and
computer vision. A variety of feature descriptors have been
proposed so far, such as wavelet coefficients[1], moments,
moment invariants [2], HOG[3], SIFT[4] etc.

As a kind of traditional and classical feature descrip-
tors, moments are capable of extracting and representing
the global feature of object with different degrees. More-
over, highlighted with efficient computation as well as low
information redundancy, orthogonal moments are developed
and introduced to various applications with respect to image
processing.

Teague introduced invariant design and image recon-
struction from Zernike Moments (ZMs)[5]. Pseudo-Zernike
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Moments (PZMs), that are similar to ZMs, were compar-
atively studied by recognizing handwritten numbers and
aircrafts[6]. Fourier-Mellin Moments (FMMs), for more ze-
ros in their radial polynomials, were developed and tested to
have better image representation ability especially for small
images[7]. Orthogonal moments, whose basis functions are
composed of a radial orthogonal polynomial and a Fourier
complex componential factor, were respectively developed
from Chebyshev[8], Jacobi[9], Bessel[10] polynomials and
exponent function[11].

Another type of orthogonal moments are those who are
defined in a square or rectangular domain. Legendre moments
are the most popular ones of this kind. There are a number
of works related to computation and application of Legendre
moments. The recent work is design of invariants from Leg-
endre moments and their application to image watermark[12].
Shen proposed Gaussian-Hermite moments[13] and later
Yang et al. performed image reconstruction and invariant
design from such moments[14, 15]. Hosny tested image
representation ability of Gegenbauer moments with a more
accurate computation algorithm[16]. Orthogonal moments in
discrete case were also proposed. Taking the discrete orthog-
onal polynomials as the basis functions is a general way to
develop discrete orthogonal moments. This can be learned
from Tchebichef[17], Krawtchouk[18], Hahn[19] and dual
Hahn[20] moments.

We can learn from the works mentioned above that all
orthogonal moments are defined by the existing orthogonal
polynomials or functions. Although this way is quite reason-
able and the most popular, it is not the only way to design
orthogonal moments. Taking advantage of some properties of
the existing orthogonal polynomials may generate new sets
of orthogonal polynomials or functions, which may be prob-
ably used to develop new family of moments. In this paper
we show how to use the parity of Hermite polynomials to
generate new orthogonal bases. In addition, we define a new
set of orthogonal moments called Hermite-Fourier Moments
(HFMs) and demonstrate their image representation ability
via image reconstruction.

The rest paper is organized as follows. Section 2 de-
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rives the new set of orthogonal bases from Hermite polynomi-
als and defines the corresponding moments. Section 3 offers
some techniques for accurate computation of the moments.
Section 4 demonstrates the results of image reconstruction.
Section 5 concludes the paper.

2. HERMITE-FOURIER MOMENTS

We use Hermite polynomials to derive new set of orthogonal
bases. Hermite polynomial of order p is defined by

Hp(x) = (−1)p exp (x2)
dp

dxp
exp (−x2). (1)

Hermite polynomials possess orthogonality because of
∫

∞

−∞

Hp(x)Hq(x) exp (−x2)dx =
√
π2pp!δpq, (2)

where δpq represents the Kronecker symbol[21].
It is evident that Hermite polynomial is an even function

when p is an even integer and an odd function when p is an
odd one. We have the following conclusion derived from such
parity property.

Theorem 1 Let p and q be two non-negative integers. When
p and q are both even numbers,

∫

∞

0

Hp(x)Hq(x) exp (−x2)dx =
√
π2p−1p!δpq. (3)

(3) is also established when p and q are both odd numbers.

The proof of Theorem 1 is straightforward according to
the parity of Hermite polynomials. This theorem is a chief
contribution of the paper. It shows two facts. Firstly, the or-
thogonality domain is shrunk to (0,∞). Secondly, all Her-
mite polynomials of even (or odd) order form an independent
orthogonality subset in this shrunk domain.

The orthogonality domain (0,∞) is facilitated to define
radial polynomials or functions. By introducing a scale pa-
rameter σ to Gaussian envelop in (3), we define the pth Radial
Hermite Polynomial (RHP) as

H̃p(r;σ) =
1

σ
√√

π2p−1p!

(σ

r

)
1
2

Hp

( r

σ

)

exp (− r2

2σ2
).

(4)
Eq. (4) is not only orthogonal but also orthonormal, because

∫

∞

0

H̃p(r;σ)H̃q(r;σ)rdr = δpq,

(p, q) ∈ {0, 2, · · · } or (p, q) ∈ {1, 3, · · · }
. (5)

Fig. 1 shows the plotting of the first 5 RHPs of odd order and
even order. The basis function of HFMs consists of a RHP
and a Fourier complex componential factor

Vpq(r, θ;σ) = H̃p(r;σ) exp (iqθ), (6)
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Fig. 1. Plotting of H̃p(r;σ) with σ = 1.0. Both RHPs of even
order and odd one form independent orthogonality subsets,
respectively.

with i is the imaginary unit. Note that (6) adopts polar coor-
dinates (r, θ) instead of Cartesian coordinates (x, y). Conse-
quently, for an image f(r, θ) its HFM of order p repetition q
is formulated explicitly by

hpq =
1

2π

∫ 2π

0

∫

∞

0

f(r, θ)V ∗

pq(r, θ;σ)rdrdθ, (7)

where “*” denotes conjugate complex. Inversely, any image
can be approximated by a set of HFMs within a maximum
order Pmax

f̂Pmax
(r, θ) =

Pmax
∑

p=0

p
∑

q=−p

hpqVpq(r, θ;σ). (8)

3. COMPUTATION IN DISCRETE CASE

The orthogonality of RHPs is over (0,∞). It is not unit disc
which is generally valid to the basis functions of ZMs, PZMs
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and FMMs. We can, however, transform it to unit disc for
computation convenience. We take the outer unit disc for co-
ordinate mapping in order to remove geometric error. Given
a digital image f(j, k) with size N × N pixels, coordinate
transformation is implemented as follows,


























xj = −
√
2/2 +

√
2(j − 1)/(N − 1)

yk = −
√
2/2 +

√
2(k − 1)/(N − 1)

rj,k =
√

x2
j + y2k/σ

θj,k = actan(yk/xj)

, (j, k) = 1, 2, · · ·N .

(9)
Another kind of computation error, numerical integration

error is reduced by the following approximation operation,

hpq =
1

2π

N
∑

j=1

N
∑

k=1

f(xj , yk)Ψpq(j, k), x2
j + y2k ≤ 1 (10)

where

Ψpq(j, k) =

∫ aj+1

aj

∫ bk+1

bk

V ∗

pq(x, y;σ)dxdy. (11)

(11) can be more accurately computed via Gauss-Legendre
numerical integration[22], which is further decomposed

Ψpq(j, k) =
(aj+1 − aj)(bk+1 − bk)

4

×
M
∑

u=1

M
∑

v=1

ωuωvV
∗

pq(xu, yv;σ).

(12)

In (12) M is number of sampling point, xu denotes Gaussian
sampling point and ωu represents its weight. The same mean-
ings are to yv and ωv. The integration interval generated by
any pixel is computed below
{

aj =xj+1 − 1/(
√
2(N − 1)), j = 0, 1, · · ·N − 1

aj =xj + 1/(
√
2(N − 1)), j = N

. (13)

When performing image reconstruction, (8) should use a
dynamic σ to generate a more precise reconstructed image. In
this paper we adopt σ selection recommended in [23], which
is

σpmax
= 0.90 · p−0.52

max , (14)

here pmax represents the maximum order that is used to re-
construct the image.

4. EXPERIMENTS

Three experiments were carried out to test the effectiveness of
computation implementation and the performance of HFMs.
The error is defined by

ep =

∑N

j=1

∑N

k=1

(

f(j, k)− f̂p(j, k)
)2

∑N

j=1

∑N

k=1
f(j, k)2

. (15)

The first one is to demonstrate the improvement in recon-
structed image brought by the algorithm in Section 3. We
reconstructed popular gray image “lena” (256 × 256 pixels)
from HFMs by the proposed computation method and Zeroth-
Order Approximation (ZOA) algorithm. Fig. 2 shows the re-
construction by odd-order HFMs from order 1 up to 79. When
high order moments are involved in, the reconstructed images
are quite different. ZOA produces sharp numerical error in the
centers and around the corners of reconstructed images. How-
ever, the proposed computation algorithm can reduce such er-
ror and produce more accurate reconstructed images.

The second one is to evaluate image representation ability
of HFMs via reconstruction. ZMs and FMMs were also em-
ployed to reconstruct for comparison. Gray image “baboon”
(256 × 256 pixels) was selected as the reference. ZMs was
implemented by Kintner’s method in[24] and FMs was com-
puted by the way in[22]. The results are shown in Fig. 3,
from which we can see image reconstruction by three classes
of moments of the first 75 orders. HFMs give the best recon-
struction in comparison with the other two kinds of orthogo-
nal moments.

The last experiment is to test noise robustness. Gray im-
age “goldhill” (256× 256 pixels) was added Gaussian White
Noise (GWN) and Salt and Pepper Noise (SPN), respectively
(see Fig. 4(a) and (b)). Reconstructing these noisy images
and then comparing the reconstructions with the noise-free
one was conducted with HFMs and FMMs. The results were
illustrated in Fig. 4. It can be learned from the figure that
with the order growing up, the reconstructed images have
ever-decreasing error until the order reaches a certain number.
This means that the moments whose orders are higher than the
number are strongly influenced by the noise. This also con-
forms to the fact that high order moments are more sensitive
to noise. However, HFMs give the better reconstructions in
two noisy cases than FMMs do.

(a) ZOA method (b) Proposed computation

Fig. 2. Reconstruction of image “lena” by HFMs of odd or-
der up to order 79 (1, 3, · · · , 79 total 40 different orders). (a)
by ZOA with e = 0.0257. (b) by the proposed computation
algorithm with e = 0.0141.
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(a) by HFMs of first 31 orders (b) by HFMs of first 75 orders

(c) by ZMs of first 31 orders (d) by ZMs of first 75 orders

(e) by FMMs of first 31 orders (f) by FMMs of first 75 orders
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Fig. 3. Reconstruction by different moments.

(a) with GWN (b) with SPN

(c) by first 51 HFMs in GWN (d) by first 51 FMMs in SPN
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Fig. 4. Noisy image reconstruction by different moments.

5. CONCLUSION

We propose a new set of orthogonal moments called HFMs in
this paper. Their basis function is composed of a radial poly-
nomial derived from the parity of Hermite polynomial and a
Fourier complex componential factor. Image reconstruction
from HFMs is investigated. The experiments show the ef-
fectiveness of computation algorithm and the superior image
representation ability of HFMs.
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