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ABSTRACT
As a hot topic in computer vision, recent researches on
salient object detection (SOD) have focused on using the
over-designed deep convolutional neural networks (CNNs) to
improve the detection accuracy. However, these complex ar-
chitectures constraint themselves to low speed and drag them
on wide-ranging applications. In this paper, we simplify the
over-designed networks and propose the Two-Branch Net-
work for Real-time Salient Object Detection (Two-B-Real
Net). Particularly, the Perceptual Branch and the Objectness
Branch in our network can efficiently capture detailed infor-
mation and distinctive objectness simultaneously. And we
also design novel attention mechanisms to guide the network
to focus on most saliency-related features and generate more
accurate results. Extensive evaluations show that the pro-
posed algorithm achieves the leading accuracy performance
with real-time speed (125fps) which is significantly faster
than the existing methods.

Index Terms— Two-Branch network, salient object de-
tection, real-time, attention mechanism

1. INTRODUCTION

As a fundamental but challenging problem in computer vi-
sion, salient object detection is derived with the goal of dis-
covering and locating most conspicuous objects or regions
in an image which attract human attention. It endows many
computer vision systems with the capability to take advantage
of human attention for more promising processing and anal-
ysis, such as semantic segmentation [1], visual tracking [2],
video summarization [3] and person re-identification [4], etc.

Generally, good salient object detection methods should
be fast, accurate, and able to identify and localize a wide
variety of objects. Recently, by introducing deep convolu-
tional neural networks (CNNs), more algorithms focus on
improving the detection accuracy of SOD. Such as Liu et al.
[5] propose a fully convolutional network (FCN) based end-
to-end method. A hierarchical recurrent CNN is adopted to
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progressively recover image details of saliency maps through
integrating local context information. Zhang et. al. [6] learn
to aggregate multi-level feature maps at each resolution and
predict saliency maps in a recursive manner. Hou et al. in [7]
densely introduce short connections by transforming high-
level features to shallower side-output layers. The multi-scale
feature maps at each layer can assist to locate salient re-
gions and recover detailed structures. While these methods
have achieved excellent salient object detection accuracy, the
complex designs like recurrent structure and dense skip con-
nection are very redundancy and computationally inefficient,
which constraint these methods to low speed and drag them
on wide-ranging applications. This is mainly caused by the
over-designed CNN architectures they use [8].

To balance the speed and accuracy, we simplify the over-
designed networks and achieve real-time SOD with a novel
architecture. Following the principle pointed out in most pre-
vious works, a good salient object detection network should
make full use of multi-level features to capture distinctive
objectness and detailed information simultaneously, and we
propose the Two-Branch Network for Real-time Salient Ob-
ject Detection (Two-B-Real Net) with two parts: Perceptual
Branch (PB) and Objectness Branch (OB). As their names im-
ply, Perceptual Branch is designed to capture the detailed vi-
sual perception information such as color, texture and spatial
structure which can localize the most attractive regions for hu-
man vision. We stack only three convolution layers to obtain
affluent perception details as low-level information. While,
for Objectness Branch, we use light backbone network Xcep-
tion [9] to quickly shrink the receptive field and obtain con-
textual objectness from deep layers efficiently as high-level
information. In pursuit of more accurate SOD results without
loss of speed, we design the Spatial Attention (SA) Module
and Channel Attention (CA) Module for Perceptual Branch
and Objectness Branch respectively. We also research the fu-
sion of two branches and introduce Attention based Feature
Fusion (AFF) Module to better aggregate multi-level feature.
The proposed attention mechanisms can guide network to fo-
cus on the salient objects and generates most saliency-related
features. As our following experiments show, the proposed
novel architecture achieves impressive results on three bench-
marks with real-time speed (125fps).
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Fig. 1. Architecture of proposed network.

2. OUR METHOD

In this section, we first illustrate our proposed Two-Branch
Network for Real-time Salient Object Detection (Two-B-Real
Net) in detail. Furthermore, we elaborate on the effectiveness
of Perceptual Branch and Objectness Branch with their Spa-
tial Attention (SA) Module and Channel Attention(CA) Mod-
ule correspondingly. Finally, the whole architecture of our
Two-B-Real Net and Attention based Feature Fusion Module
(AFF) will be introduced.

2.1. Perceptual Branch with Spatial Attention

In the SOD task, most state-of-the-art methods [6, 7, 8] di-
rectly use the shallower side-output layers of pre-trained
deep CNN or complex convolutional modules to capture
low-level features. For real-time SOD task, these modules
inevitably need more computation and run-time. The pop-
ular approaches to accelerate this process are resizing input
image to a small size to reduce the computation complex-
ity or lightening the network by channel pruning. However,
those approaches damage the detailed information especially
spatial structure. To preserve affluent detailed visual percep-
tion information with high speed, we propose the Perceptual
Branch which contains only three convolution layers. Each
layer includes a convolution with stride = 2, followed by
batch normalization [10] and ReLU. Therefore, this branch
extracts the output feature maps that is 1/8 of the original
image. It encodes rich detailed information due to the large
spatial size of feature maps. Figure 1 presents the details of
the structure.
Spatial Attention Module:In general, salient objects only cor-
respond to partial regions of the input image. And there ex-
ist some background regions which can distract human atten-
tion. Therefore, directly exploiting convolutional features to
predict saliency can lead to sub-optimal results because of

the distraction of non-salient regions. Instead of consider-
ing all spatial positions equally, spatial attention is able to
focus more on the saliency-related regions, which helps to
generate effective features for SOD task. Inspired by SENet
[8], we propose a Spatial Attention (SA) Module to refine the
low-level features. As Figure 2(a) shows, SA module first
employs a convolutional layer with 1 × 1 kernels, followed
by batch normalization and ReLU. Then attention weight of
feature map at each pixel is obtained by applying Softmax
operation. Finally, we concatenate the spatial attention map
with the low-level feature maps instead of directly multiply-
ing them. Because, multiplying the attention maps with the
low-level feature maps causes fake edges, which may lead to
wrong saliency predictions.

2.2. Objectness Branch with Channel Attention

While the Perceptual Branch encodes affluent detailed visual
perception information, the Objectness Branch is designed
to provide sufficient high-level contextual objectness. Di-
rectly using the deep side-output features of very deep pre-
trained CNN like VGG-19 [11] or ResNet-101/152 [12] is
computation demanding and memory consuming. Consid-
ering efficient computation and sufficient high-level features
with large receptive field simultaneously, we propose to use
a lightweight model as the backbone of Objectness Branch.
The lightweight model, like Xception [9], can downsample
the feature map fast to obtain a large receptive field, which
encodes high-level semantic objectness information. Then,
we combine the up-sampled features of the last three stages
as the final output of Objectness Branch.
Channel Attention Module:As different channels of feature
in CNNs generate response to different semantics, it is un-
wise to treat all channels without distinction. To alleviate
the interference of the irrelevant semantic information, we in-
troduce a Channel Attention (CA) Module to assign larger
weights to channels which show a higher response to salient
objects.As Figure 2(b) shows, CA Module employs global av-
erage pooling to capture global context and computes an at-
tention vector to guide the feature learning. It integrates the
global contextual objectness easily at each stage. Therefore,
it demands negligible computation cost. Considering there
are fewer channels in low-level features and all of them can
be useful, we don’t apply Channel Attention on Perceptual
Branch. And since most spatial information has already been
lost in high-level features, it will be redundant to use Spatial
Attention on Objectness Branch.

2.3. Network architecture

As illustrated in Figure 1, We use the pre-trained Xception
model as the backbone of the Objectness Branch and three
convolution layers as the Perceptual Branch. Then we fuse
the output features of these two branches and followed by up-
sample layers with skip connection from low-level features to
make the final prediction. Our Two-B-Real Net can achieve
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real-time performance and high accuracy simultaneously.
First, we simplify the over-designed networks, so both two
branches are not computation intensive. Furthermore, these
two branches compute concurrently, which considerably in-
creases efficiency. Second, the attention mechanisms can
guide the network to focus on most saliency-related features
for more accurate results with negligible computation cost.
Attention based Feature Fusion: As the two branches encode
different level information, we can not simply sum up these
features. Instead, we use an Attention based Feature Fusion
module to aggregate multi-level features. As shown in Figure
2(c), we first concatenate the output features of two branches.
And then we utilize the batch normalization to balance the
scales of the features. Next, we pool the concatenated feature
to a feature vector and compute an attention weight vector.
This weight vector can re-weight the features, which amounts
to feature selection and combination.
Loss Function: Given the SOD training dataset S with N
training pairs S = {(Xn, Yn)}Nn=1 , where Xn = {xni , i =
1, . . . , T} and Yn = {yni , i = 1, . . . , T} are the input image
and the binary ground-truth image with T pixels, respectively.
yni = 1 denotes the foreground pixel and yni = 0 denotes the
background pixel. In most of existing SOD methods, the loss
function used to train the network is the standard pixel-wise
binary cross-entropy (BCE) loss. However, for a typical natu-
ral image, the class distribution of salient/non-salient pixels is
heavily imbalanced: most of the pixels in the ground truth are
non-salient. To automatically balance the loss between pos-
itive/negative classes, we introduce a class-balancing weight
β on a per-pixel term basis, following [13]. Specifically, we
define the following weighted cross-entropy loss function,

Lwbce = −β
∑
i∈Y+

logPr(yi = 1|X; θ)

−(1− β)
∑
i∈Y−

logPr(yi = 0|X; θ).
(1)

where θ is the parameter of the network. Pr(yi = 1|X; ) ∈
[0, 1] is the confidence score of the network prediction that
measures how likely the pixel belong to the foreground. The
loss weight β = |Y+|/|Y |, and |Y+| and |Y−| denote the fore-
ground and background pixel number, respectively.

3. EXPERIMENTAL EVALUATION

In our experiments, we use three evaluation metrics. (i) The
precision-recall (PR) curves, which exhibits the mean pre-
cision and recall of saliency maps at different thresholds.
(ii) The F-measure is a weighted mean of average precision
and recall, calculated by Fη = (1+η2)×Precision×Recall

η2×Precision+Recall . We
set η2 to be 0.3 as suggested in [14]. (iii) The mean abso-
lute error (MAE), MAE = 1

W×H
∑W
x=1

∑H
y=1 |S(x, y) −

G(x, y)|,where W and H are the width and height of the
input image. S(x, y) and G(x, y) are the pixel values of
the saliency map and the binary ground truth at (x, y), re-
spectively. For the performance evaluation, we adopt three
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Fig. 2. Illustration of attention modules, where ⊕ means ele-
ment addition and ⊗ means element multiplication.

well-known SOD datasets, including ECSSD [15], DUT-
OMRON [16] and HKU-TE [17]. And we compare our
proposed method with other 9 state-of-the-art ones, including
7 deep learning based algorithms: Amulet [6], UCF [18],
DCL [19], DHS [5], RFCN [20], ELD [21], MDF [17] and 2
conventional algorithms: MST [22], DSR [23]. We use either
the implementations with recommended parameter settings
or the saliency maps provided by the authors.

To train our model, we adopt the MSRA10K [14] dataset,
which has 10,000 training images with pixel-wise saliency an-
notations. And we augment this dataset by random cropping
and mirror reflection, producing 120,000 training images to-
tally. We implement our proposed model based on Tensor-
Flow framework [24]. We train and test our method in a PC
machine with an NVIDIA GTX 1080 GPU and an i7-6900
CPU. During the training, we use standard SGD method with
batch size 12, weight decay 0.005. We set the base learning
rate to 1e-4 and decrease the learning rate by 1% when train-
ing loss reaches a flat. The training process converges after
150k iterations.

As shown in PR curves and Table 1, for quantitative com-
parison, our method has already achieved competitive accu-
racy performance among the state-of-the-art methods. We
further replace the backbone net with ResNet18 [12] a more
powerful pre-trained CNN as Ours-2. With ResNet18, our
method consistently outperforms existing methods across all
the datasets in terms of almost all evaluation metrics. And
we also examine the effectiveness of the proposed techniques
by using two baselines: baseline 1 – without using the atten-
tion mechanisms and baseline 2 – without using skip connec-
tion. The results in Table 1 shows the attention mechanisms
and skip connection can further improve our accuracy per-
formance. For qualitative comparison, Figure 3 shows some
sample saliency maps from three datasets for reference. Our
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Source DSR MST MDF ELD RFCN DHS DCL UCF Amulet Ours1 Ours2 Ground Truth

Fig. 3. Comparison of typical saliency maps.
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Fig. 4. The PR curves of the proposed algorithm and other state-of-the-art methods.

Table 1. Quantitative comparison on 3 famous datasets. The best three results are shown in red, green and blue, respectively.

Data Set Metric DSR MST MDF ELD RFCN DHS DCL UCF Amulet BLine1 BLine2 Ours-1 Ours-2
F-m 0.662 0.724 0.807 0.810 0.834 0.872 0.829 0.844 0.868 0.825 0.831 0.848 0.887ECSSD MAE 0.178 0.155 0.105 0.080 0.107 0.060 0.149 0.069 0.059 0.097 0.082 0.067 0.054
F-m 0.524 0.588 0.644 0.611 0.627 - 0.684 0.621 0.647 0.642 0.655 0.674 0.695DUT-

OMRON MAE 0.139 0.161 0.092 0.092 0.111 - 0.157 0.120 0.098 0.107 0.113 0.093 0.084
F-m 0.682 0.707 0.802 0.776 0.838 0.854 0.853 0.823 0.843 0.822 0.834 0.842 0.871HKU-TE MAE 0.142 0.139 0.095 0.072 0.088 0.053 0.136 0.061 0.050 0.091 0.079 0.063 0.051

Table 2. Speed Comparison. Image size is 400× 300.

Method DSR MST MDF ELD RFCN DHS DCL UCF Amulet Ours-1 Ours-2
fps 0.662 5 0.125 2 3 23 2 23 16 125 68

code Matlab C Matlab C Matlab Matlab Matlab Matlab Matlab Python Python

model is able to detect salient objects in the scene with com-
plex or highly textured background. The speed comparison
is shown in Table 2. As can be seen, with the light backbone
network Xception, our method runs 125 fps and is 5 times
faster than the best existing methods. Even using ResNet18
as the backbone network, our method runs 68 fps, which is
still significantly faster than the other methods. And the real-
time speed will foster more applications.

4. CONCLUSION

In this paper, we present a novel Two-Branch Network with
well-designed attention mechanisms to improve the speed
and accuracy of real-time salient object detection simultane-

ously. Our proposed Two-B-Real Net contains two branches:
Perceptual Branch (PB) and Objectness Branch (OB). The
Perceptual Branch is designed to capture the detailed visual
perception information from original images. And the Ob-
jectness Branch utilizes the lightweight model to quickly
shrink the receptive field and obtain contextual objectness
from deep layers efficiently. We also design special atten-
tion mechanisms to guide the network to focus on most
saliency-related features for more accurate results. Extensive
experiments demonstrate that our method performs favorably
against state-of-the-art saliency approaches in both accuracy
and speed.
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