
LADDERNET: KNOWLEDGE TRANSFER BASED VIEWPOINT PREDICTION IN
360◦ VIDEO

Pengyu Zhao† Yuanxing Zhang† Kaigui Bian† Hu Tuo¶ Lingyang Song†

†Peking University, Beijing, China
¶iQIYI Co. Ltd., Beijing, China

†{pengyuzhao, longo, bkg, lingyang.song}@pku.edu.cn, ¶tuohu@qiyi.com

ABSTRACT

In the past few years, virtual reality (VR) has become an en-
abling technique, not only for enriching our visual experience
but also for providing new channels for businesses. Unteth-
ered mobile devices are the main players for watching 360-
degree content, thereby the precision of predicting the future
viewpoints is one key challenge to improve the quality of the
playbacks. In this paper, we investigate the image features of
the 360-degree videos and the contextual information of the
viewpoint trajectories. Specifically, we design ladder convo-
lution to adapt for the distorted image, and propose LadderNet
to transfer the knowledge from the pre-trained model and re-
trieve the features from the distorted image. We then combine
the image features and the contextual viewpoints as the in-
puts for long short-term memory (LSTM) to predict the future
viewpoints. Our approach is compared with several state-of-
the-art viewpoint prediction algorithms over two 360-degree
video datasets. Results show that our approach can improve
the Intersection over Union (IoU) by at least 5% and meet-
ing the requirements of the playback of 360-degree video on
mobile devices.

Index Terms— Untethered virtual reality, image distor-
tion, viewpoint prediction

1. INTRODUCTION

Virtual reality (VR) combines cutting-edge technologies
in multimedia, sensors, Internet technologies, and artificial in-
telligence. VR content provides 360-degree panoramic view-
sound field and immersive experience, and no matter where
people are, they can feel themselves in the landscape. The rise
of virtual reality may completely change real estate, games,
tourism, industrial manufacturing, and other industries. Many
companies attempt to combine VR with the Internet, big data,
and cloud computing, and thus VR truly becomes a solution
to the core technology from a toy.

Researchers have proposed many streaming strategies
based on estimating the location of viewpoints [1] for up-
grading the service of playing VR videos on the commercial
immersive playback devices. Most of the strategies solve the
problem by constructing optimization problems over some
quality of experience (QoE) metrics [2, 3]. Other common

strategies on this issue resort to group-based learning [4] and
irregular tile shapes [5]. Usually, the streaming affects the
economic aspect of the VR video-on-demand services, as the
quality of streaming determines the engagement of users and
the expenditure for content delivery.

The viewpoint-relevant streaming strategies always as-
sume a high precision on predicting the exact location of
future viewpoints of users. However, the viewpoints are usu-
ally difficult to predict, as the prediction may encounter the
following three challenges: 1) Cold start. Mining the pattern
among the historical trajectories requires complicated and an-
notated clustering models with accumulated trajectories data,
whereas these works cannot handle the real-world scenario
where newly released 360-degree videos are flooded every
day. 2) Distorted image. Unlike the monocular videos, the
contents in the 360-degree videos under the equirectangular
projection scheme are always distorted, which can be hardly
recognized unless being recovered by the perspective projec-
tion. 3) Low latency requirement. The untethered mobile
devices usually own weak computing capabilities and receive
media data from the Internet with limited bandwidth, thereby
the computation latency should be minimized to guarantee
the QoE of the playback.

Two categories of works, divided by whether they attempt
to understand the distorted image directly, are proposed to ad-
dress these challenges. In some specific scenarios where the
possible points of interests are all gathered around the equator
of the sphere with only slight distortion, conventional object
detection algorithms [6] can help understand the point of in-
terest. These methods show good performance on predicting
the viewpoint in the subsequent frame, but may not predict ac-
curately for the viewpoints to the several subsequent frames.
Besides, the saliency map and motion map [7] are investi-
gated to avoid detection of the distorted objects, while they
are sensitive to noise in the real-world videos [8]. Regard-
ing feature retrieval over the distorted images, state-of-the-art
algorithms operate on the perspective projection rather than
the distorted projection. Successful attempts resort to knowl-
edge transfer, including SPHCONV [9] which imitates VGG
on the cropped field of view and SphereNet [10] which wraps
spherical filters. Saliency map of panoramic frames [11] and
attention mechanism [12] are also patched to learn the fea-
tures of the 360-degree videos, while a trial on reinforcement
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Fig. 1. Perspective fields of view to equirectangular projec-
tions given three viewpoints. The image will distort to differ-
ent sizes and shapes depending on the viewpoints.

learning [13] under strong assumptions further improvement
with complicated computation. These models rely on high
computing capabilities, which may not be appropriate for the
on-demand playback of 360-degree videos on mobile devices.

In this paper, we propose ladder convolution to solve
the distortion of the equirectangular image. Based on the
ladder convolution, we introduce LadderNet to transfer the
knowledge of residual nets (ResNet) [14] over the perspec-
tive projection, and retrieve the decent image features from
the distorted field of view. The image features are then
concatenated with the embeddings of viewpoints and fed to
long short-term memory (LSTM) for viewpoint prediction.
Evaluation over two open-source datasets reveals the perfor-
mance of our approach. Compared to several state-of-the-art
viewpoint prediction strategies, our approach improves the
Intersection over Union (IoU) by at least 5% without over-
whelming computing resources or requiring long running
time.

2. PROBLEM FORMULATION

Suppose we have a 360-degree video set V with size
|V | and each video v ∈ V is attached with a trajectory
set for tracking each user’s viewpoint when viewing this
video, denoted as τv . A trajectory consists of a sequence
of polar angle (latitude) and azimuth angle (longitude) in
a spherical coordinate system which indicates the view-
point at a specific timestamp. Considering the processing
capability of the mobile device, we extract and predict the
viewpoints in 200 milliseconds granularity rather than every
frame of the video. We retrieve the frames correspond-
ing to the viewpoints to supply content information for the
prediction. Besides, we calculate the region that would be
viewed according to the viewpoint, defined as a perspec-
tive field of view. Based on the perspective field of view,
we could recover the undistorted content to be displayed on
the mobile device, defined as a perspective projection. Let
r = 〈(x1, y1, F1), (x2, y2, F2), . . . , (x|r|, y|r|, F|r|)〉 indicate
a trajectory, where x∗, y∗, and F∗ stand for the latitude, longi-
tude, and the equirectangular projection frame at a timestamp
respectively. For simplicity, we fix the angle of field of view
as 110◦ × 110◦. Our task is to predict the viewpoints in the
subsequent timestamps given the previous viewpoint trajec-
tories and the retrieved frames over the entire video.
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Fig. 2. The unfolded structure of LadderNet, which contains
convolutional layers, Ladder-Conv layers, and pooling layers.
The Ladder-Conv layer splits the sphere into strips and de-
ploys various kernel on each strip, and thus it can adapt to the
distorted image and reduce the number of parameters.

3. LADDER CONVOLUTION BASED KNOWLEDGE
TRANSFER

In this section, we introduce the design of LadderNet,
which is proposed to retrieve image features from the per-
spective field of view by transferring the knowledge on the
perspective projection from ResNet.

3.1. Ladder Convolution

In a 360-degree video, the distortion is location-dependent
- a rectangular perspective projection does not correspond to
a rectangular region in the equirectangular projection, and its
shape and size depend on the latitude of the viewpoint. Fig.
1 illustrates three perspective fields of view given the view-
points as examples. It is obvious that perspective fields of
view are different and not orthogonal to the image, while the
contents inside the perspective fields of view are distorted.
However, the legacy convolution is not appropriate for this is-
sue, since the receptive fields of the neurons are the same in
the convolution layer. Therefore, we propose ladder convo-
lution to learn the knowledge of the region around the view-
points from the distorted video frame by differentiating the
receptive fields of the neurons in different locations.

Ladder-Conv Layer. As the shape and size of the per-
spective field of view are determined by the latitude of the
viewpoint (row of the image), we are expected to use the sep-
arate kernels for each row of the equirectangular image. How-
ever, as the shapes of the perspective fields of view between
adjacent rows tend to be similar, it is reasonable to make some
of them share the kernels. Then, the number of the parameters
of the network can be significantly reduced. Specifically, we
propose Ladder-Conv layer which splits the sphere into strips
by latitude, with separate 1-d kernels attached to each strip.
As the equirectangular projection oversamples the spherical
image in the polar regions, the length of the kernel for the po-
lar strip should be longer than the kernel for the equator strip.
To further reduce the complexity of the layer without loss of
generality, we make the strips symmetric distributed over the
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Table 1. Design of the Ladder-Conv layers by layer ID.
1 2 3 4 5 6

Rows Conv. Rows Conv. Rows Conv. Rows Conv. Rows Conv. Rows Conv.
1-5 1×5 1-4 1×5 1-4 1×5 1-2 1×5 1-2 1×5 1-2 1×3

6-20 1×3 5-8 1×3 5-7 1×3 3-3 1×3 3-3 1×3 3-11 1×1
21-24 1×5 9-17 1×1 8-18 1×1 4-10 1×1 4-10 1×1 12-12 1×3

- - 18-21 1×3 19-21 1×3 11-11 1×3 11-11 1×3 - -
- - 22-24 1×5 22-24 1×5 12-12 1×5 12-12 1×5 - -

sphere, and thereby we could use same 1-d kernels for the
symmetric strips.

LadderNet. The structure of LadderNet is illustrated in
Fig. 2. The size of the input image to the LadderNet is
768 × 1280 pixels, which is generated by downsampling of
the ultra high-dimension (UHD) frame. We use five 7 × 7
kernels with stride 2 to increase the receptive field size while
maintaining the information through the channel expansion.
Six Ladder-Conv layers are utilized to solve the different per-
spective field of view in various latitude. They also reduce
the number of parameters to meet the computing requirement
of the playback of 360-degree video. Since the perspective
field of view might be split into two if it passes through the
180◦ longitude, we use the global average pooling to address
this phenomenon and compress the feature maps into a single
vector to represent the image feature of the frame.

3.2. Knowledge Transfer Method

Uniform Sphere Sampling. To improve the training
efficiency of the Ladder-Conv layers, we investigate an ef-
ficient uniform sampling of the spherical image, rather than
conducting convolutions for the viewpoints at each pixel
of the sphere. The equirectangular projection oversamples
the spherical image in the polar regions, and thus the polar
regions require sparser sampling than the equator regions.
Specifically, we sample viewpoints along each row of the
equirectangular projection that encircles the sphere in a way
that the distance between adjacent points in each circle is in-
versely proportional to the latitude. Each pixel on the sphere
is guaranteed to be covered by at least one sampled perspec-
tive fields of view, and thus the loss of information could be
minimized. We calculate the perspective field of view on the
equirectangular projection frame, i.e., retaining the color of
each pixel in the perspective field of view and leaving the
other pixels as black. The LadderNet receives the perspec-
tive field of view and finally outputs the extracted features
corresponding to each viewpoint.

Knowledge Transfer from ResNet-50. We expect the
LadderNet to automatically extract the features of the per-
spective projection from the distorted perspective field of
view. We transfer the image features of the perspective pro-
jection with length 2048 learned by ResNet-50 to LadderNet,
which captures the color, undistorted object, and distribution
information. The LadderNet is thereby designed to generate
the same output from the distorted image as the ResNet-50.
During training, we minimize the L2 loss between the im-
age features corresponding to the sampled viewpoints for the
parameters of the LadderNet.

Hyper parameters. The LadderNet can be trained of-

fline. We use the Adam optimization [15] with learning rate
as 0.003. The specific design of Ladder-Conv layer is demon-
strated in Tab. 1.

4. PREDICTING VIEWPOINTS BY LSTM

We implement LSTM to learn the long short-term depen-
dency of the contextual information in the viewpoint trajecto-
ries. Given a trajectory r, the LSTM network is expected to
make the prediction at timestamp t to predict the viewpoints
in the future, based on the trajectory by the end of timestamp
t.

4.1. Importing Image Features

The image features indicate what information the users
are interested in. As mentioned in Sec. 3, the pre-trained
LadderNet retrieves the image features from the perspective
field of view. However, we expect the LadderNet could not
only extract the “local” features of the perspective fields of
view, but also learn the “global” image features of the entire
equirectangular frame. It enlightens us to retrieve the global
feature ft by feeding the entire frame to the LadderNet, and
uses this global feature for decoding the future viewpoints,
i.e., ft = LadderNet(Ft).

4.2. LSTM Structure in LadderNet

To expand the representation capability, we transform the
viewpoints from two real values to a high dimensional embed-
ding through a fully-connected layer. The parameters of the
embedding learning layer can be trained along with the LSTM
cells. We expect the LSTM can figure out the points of inter-
ests of the users based on the previous part of the viewpoint
trajectory to the video, and embed the knowledge in the hid-
den state of the LSTM cell. Then, given the image feature of
the next frame, the LSTM is able to retrieve the evidence indi-
cating for the location that the user may be interested in. We
concatenate the image feature with the embedding of view-
point location and feed them into the LSTM cell to generate
the location-relevant vector,

et, ht = LSTM(ft+1,EMBEDDING(xt, yt);ht−1), (1)

where ht is the hidden state of the t-th LSTM cell. Finally,
we set a fully-connected layer to decode the prediction of the
viewpoints at timestamp t+ 1, i.e.,

(x
(t)
t+1, y

(t)
t+1) = DECODER(et). (2)

4.3. Training

We could recurrently feed the predicted viewpoint back to
the LSTM and obtain the prediction (x

(t)
t′ , y

(t)
t′ ) for any times-

tamp t′ given the historical trajectory by the end of timestamp
t. As we are expected to predict accurately for several sub-
sequent timestamps, the number of which is denoted as γ, in
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the future, the model should minimize the loss

L(V ; θ) =
∑
v∈V

∑
r∈τv

|r|−γ∑
t=1

t+γ∑
t′=t+1

||(x(t)t′ , y
(t)
t′ )− (xt′ , yt′)||2

(3)
where θ represents the parameter of the models to be learned
from the training data.

5. EVALUATION

5.1. Settings

Datasets. We collect two datasets of UHD 360-degree
videos with viewpoint trajectories. The first dataset [16] in-
cludes 16 videos with at least 3 minutes in length, which
provide enough contextual information. The second dataset
[17] consists of 18 videos with only 20 seconds length. Most
objects in the videos are severely distorted because of the
equirectangular projection that the object detection algo-
rithms cannot accurately identify them under pilot experi-
ments like faster R-CNN [18] and YOLO [19]. The evalua-
tions are cross-validated by taking one video as the unseen
test video and the other videos as the training videos. 90% of
the trajectories corresponding to the training videos are used
for training, and the remaining trajectories are treated as part
of the test set.

Algorithms for Comparison. We compare the proposed
LadderNet on the viewpoint prediction task with several com-
mon viewpoint prediction strategies in the streaming system,
including: Reactive uses the latest viewpoint; Linear re-
gression (LR) predicts by the previous 4 viewpoints; LSTM
predicts by the viewpoints from the beginning of the trajec-
tory. We also compare LadderNet with several state-of-the-art
viewpoint prediction algorithms which may be affordable on
the mobile devices regarding the runtime memory consump-
tion and execution time: Deep 360 Pilot (D360P) [6] selects
the main objects in the entire distorted image by faster R-
CNN [18] and predicts viewpoint; SphereNet [10] learns the
image features by wrapping filters on the sphere, which are
then fed to the LSTM to make the prediction; ResNet [14]
learns the image features from the entire distorted image,
which are then fed to the LSTM to make the prediction.

Performance Metrics. To quantify our results on predict-
ing viewpoints for the playback of 360-degree videos on mo-
bile devices, we report both Intersection over Union (IoU) and
Running Time (RT). IoU measures how much the perspec-
tive field of view centered at the predicted viewpoint overlaps
with that of the ground truth at each frame. RT evaluates
the average computing time for predicting viewpoint at any
timestamp.

5.2. Performance of LadderNet

IoU of Predicting Viewpoints. The IoU metric indicates
to what extent the prediction is near the ground truth, which
is calculated by the intersection over the union of the per-
spective field of view under the angle of 110◦ × 110◦. We
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examine the IoU for the prediction of the viewpoints in the
subsequent 4 seconds, namely 20 timestamps. Performance
of the seven compared algorithms is plotted in Fig. 3. We find
that the algorithms working on the perspective projection (i.e.,
SphereNet, LadderNet) improve the IoU compared to the al-
gorithms working directly on the distorted image (i.e., D360P,
ResNet). With the help of the image features and contextual
information, LadderNet outperforms the state-of-the-art algo-
rithms by at least 5% on average.

Runtime Latency for Predicting Viewpoints. We de-
pict the average runtime for generating viewpoint for one
timestamp from the compared algorithms in Fig. 4. The
content-independent algorithms provide predictions in up to
tens of milliseconds, while the content-aware algorithms re-
quire hundreds of milliseconds. Due to the reduction of the
number of parameters, LadderNet significantly decreases the
running time. Compared to the other content-aware algo-
rithms, LadderNet leaves much space for executing heuristic
QoE-driven streaming strategies on mobile devices.

6. CONCLUSION

In this paper, we propose LadderNet to retrieve image fea-
tures from the distorted equirectangular projection by trans-
ferring the knowledge from ResNet-50 on the perspective pro-
jection. LadderNet includes ladder convolution layers, which
split the sphere into symmetric strips and conducts convolu-
tion on each strip to adapt for the distorted content and reduce
the number of parameters. We combine the image features
and the contextual information of the viewpoint trajectories to
predict the viewpoints at a future timestamp. Evaluations re-
veal that LadderNet outperforms several state-of-the-art view-
point prediction algorithms and it is appropriate for being de-
ployed on mobile devices.

Acknowledgment
This work is partially supported by the National Key Re-

search and Development Program No. 2017YFB0803302, the
National Natural Science Foundation of China No. 61572051
and CERNET Innovation Project NGII20160124.

1660



7. REFERENCES

[1] Jill M Boyce, Yan Ye, Jianle Chen, and Adarsh K Rama-
subramonian, “Overview of shvc: Scalable extensions
of the high efficiency video coding standard,” IEEE
Transactions on Circuits and Systems for Video Tech-
nology, vol. 26, no. 1, pp. 20–34, 2016.

[2] Feng Qian, Bo Han, Qingyang Xiao, and Vijay
Gopalakrishnan, “Flare: Practical viewport-adaptive
360-degree video streaming for mobile devices,” in
ACM MobiCom, 2018.

[3] Jian He, Mubashir Adnan Qureshi, Lili Qiu, Jin Li, Feng
Li, and Lei Han, “Rubiks: Practical 360-degree stream-
ing for smartphones,” in Mobisys. ACM, 2018.

[4] Lan Xie, Xinggong Zhang, and Zongming Guo, “Cls:
A cross-user learning based system for improving qoe
in 360-degree video adaptive streaming,” in 2018 ACM
Multimedia Conference. ACM, 2018, pp. 564–572.

[5] Chao Zhou, Mengbai Xiao, and Yao Liu, “Clustile:
Toward minimizing bandwidth in 360-degree video
streaming,” in IEEE INFOCOM 2018. IEEE, 2018, pp.
962–970.

[6] Hou-Ning Hu, Yen-Chen Lin, Ming-Yu Liu, Hsien-Tzu
Cheng, Yung-Ju Chang, and Min Sun, “Deep 360 pilot:
Learning a deep agent for piloting through 360 sports
videos,” in Proc. CVPR, 2017, pp. 1396–1405.

[7] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying
Huang, Kuan-Ta Chen, and Cheng-Hsin Hsu, “Fixation
prediction for 360 video streaming in head-mounted vir-
tual reality,” in Proceedings of the 27th Workshop on
Network and Operating Systems Support for Digital Au-
dio and Video. ACM, 2017, pp. 67–72.

[8] Yujie Li, Atsunori Kanemura, Hideki Asoh, Taiki
Miyanishi, and Motoaki Kawanabe, “A sparse cod-
ing framework for gaze prediction in egocentric video,”
in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018,
pp. 1313–1317.

[9] Yu-Chuan Su and Kristen Grauman, “Learning spher-
ical convolution for fast features from 360 imagery,”
in Advances in Neural Information Processing Systems,
2017, pp. 529–539.

[10] Benjamin Coors, Alexandru Paul Condurache, and An-
dreas Geiger, “Spherenet: Learning spherical repre-
sentations for detection and classification in omnidirec-
tional images,” in Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2018, pp. 518–533.

[11] Ziheng Zhang, Yanyu Xu, Jingyi Yu, and Shenghua
Gao, “Saliency detection in 360 videos,” in Proceed-
ings of the European Conference on Computer Vision
(ECCV), 2018, pp. 488–503.

[12] Xin Ji, Wei Wang, Meihui Zhang, and Yang Yang,
“Cross-domain image retrieval with attention model-
ing,” in Proceedings of the 2017 ACM on Multimedia
Conference. ACM, 2017, pp. 1654–1662.

[13] Mai Xu, Yuhang Song, Jianyi Wang, MingLang Qiao,
Liangyu Huo, and Zulin Wang, “Predicting head move-
ment in panoramic video: A deep reinforcement learn-
ing approach,” IEEE transactions on pattern analysis
and machine intelligence, 2018.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proc. CVPR, 2016, pp. 770–778.

[15] Diederik P Kingma and Jimmy Ba, “Adam: A
method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[16] Chenglei Wu, Zhihao Tan, Zhi Wang, and Shiqiang
Yang, “A dataset for exploring user behaviors in vr
spherical video streaming,” in Proceedings of the 8th
ACM on Multimedia Systems Conference. ACM, 2017,
pp. 193–198.
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