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ABSTRACT

In this paper, we propose the Radial Loss which utilizes cat-
egory and sub-category labels to learn an order-preserving
fine-grained video similarity metric. We propose an end-to-
end quadlet-based Convolutional Neural Network (CNN) com-
bined with Long Short-term Memory (LSTM) Unit to model
video similarities by learning the pairwise distance relation-
ships between samples in a quadlet generated using the cate-
gory and sub-category labels. We showcase two novel appli-
cations of learning a video similarity metric - (i) fine-grained
video retrieval, (ii) fine-grained event detection, along with
simultaneous shot boundary detection, and correspondingly
show promising results against those of the baselines on two
new fine-grained video datasets.

Index Terms— Fine-grained Video Similarity, CNN-
LSTM, Radial Loss, Critical Event Detection

1. INTRODUCTION

The increased consumption of digital media in recent years has
stemmed the need to develop algorithms, which automatically
analyze video data for various applications such as video classi-
fication, retrieval, summarization, etc. Learning a fine-grained
video similarity opens up space for following applications:
(i) fine-grained video retrieval (FgVR), where given a query
video clip, a ranked list of similar video clips can be retrieved,
(ii) detecting critical events within videos and simultaneously
identifying shot boundaries. Critical events are fine-grained
activities in a video that tend to increase user anxiety and antic-
ipation. These activities could be part of a whole video event
and do not necessarily have defined shot boundaries resulting
in poor video frames classification accuracy for the conven-
tional shot boundary detection (SBD) methods. Highlighted
frames of Clip 2 shown in Fig. 1 illustrate an example of a
critical event in soccer highlight video.

In this paper, we propose the Radial Loss, capable of learn-
ing a fine-grained video similarity metric. The Radial loss
captures implicit relationships between samples of a quadlet
(consisting of query:q, positive:p, intermediate:i, negative:n

‡Authors contributed equally to the work

Fig. 1: Illustration of Critical Event. Highlighted frames (yel-
low border) of Clip-2 are critical frames where the ball hit by
the player enters the net.

samples) such that D(f(q), f(p)) < D(f(q), f(i)) <
D(f(q), f(n)) and D(f(p), f(i)) < D(f(p), f(n)) where
D(f(a), f(b)) = ||f(a)− f(b)||22

We propose a deep quadlet based CNN + LSTM network
architecture that is able to learn video embedding through
a set of video clip quadlets. Using the overall framework,
we learn a fine-grained video similarity metric to identify
critical clips and shot boundaries, and use the same to retrieve
videos in the task of order ranking of FgVR. To the best of our
knowledge, this is the first attempt to performing Critical Clip
Detection (CCD) and FgVR using video similarity learning.
We also argue for the improved feature embedding learned
using the Radial loss over the triplet and quadruplet-based
losses introduced in the prior art and showcase its superior
results in the aforementioned applications.

2. RELATED WORK

Traditional methods to learn a video similarity employ hand-
crafted features [1, 2]. Recently, deep learning based solutions
have been proposed in the literature to learn feature embed-
dings through triplet-based or quadruplet-based loss function
[3, 4, 5] for the purpose of learning fine-grained similarity
in images. A variation of the triplet-loss was proposed in
[6] which takes into account the angle relationship between
triplet samples to show improved performance. Although these
methods improve the performance of triplet loss to learn fine-
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Fig. 2: (a) Network architecture of proposed framework. (b)
Illustration of Theorem 3.1 (∠a > 90◦)

grained image similarity through different sampling strategies,
there is no work in prior art that employs such methods for
learning fine-grained similarity in videos.

Literature consists of fine-grained action detection and
segmentation work, [7, 8, 9] none of them focussing on FgVR;
thus, no multi-class datasets with fine-grained categorization
are available. There are single class datasets with fine-grained
annotations such as 50 Salads[10], VB100 [11], JIGSAWS
[12]. We exploit VB100 and YouTube to create our own multi-
class dataset for FgVR. For CCD, we obtain annotations and
present results on soccer highlights dataset, but the proposed
framework can easily be adapted to other notions of criticality.

3. PROPOSED METHODOLOGY

We propose a quadlet-based framework (see Fig. 2(a)) that
takes a quadlet Q = {q, p, i, n} as input where each sample
consists of a set of consecutive video frames that are picked
from the annotated video dataset during each training iteration.
The term DeepNet in this paper refers to the existing trained
deep neural network AlexNet [13]. Each DeepNet is followed
by an LSTM cell at the top to learn long-term dependencies
for each sample in Q. Lastly, the output of these networks is
fed into a L2-normalization layer. A loss ranking layer then
evaluates the proposed loss over the set of training quadlets.
During learning, it tries to preserve the relative ordering across
the samples in selected quadlet.

For the two tasks of FgVR and CCD we demonstrate two
different strategies for quadlet selection (q, p, i, n video clips)
for training. For the task of video retrieval, given the class and
sub-class labels for videos, selection is done in such a way
that q and p share the same fine-grained category while q and
i share the same category/class at a coarser level but different
sub-categories at a fine-grained level. Lastly, q and n belong to
different classes. For the task of identifying fine-grained events
within videos, we refer to Fig. 1. In the soccer highlight video
a player kicking the ball towards the goal constitutes a critical
event as shown in highlighted frames (yellow) of Clip-2. It is
separated from Clip-1,3 by hard-cuts which are non-critical.
We can see a stark similarity between the highlighted frames

and rest of the frames within Clip-2 as compared to those of
Clip-1 and 3. Thus, q and p are selected from non-critical
frames (from non-highlighted frames of Clip-2 in Fig.1) and i
is selected from the frames annotated as “critical" within the
same clip (highlighted frames of Clip-2 in Fig.1). n is selected
from the next consecutive clip (Clip-3 in Fig.1).

3.1. Radial Loss

Our aim is to formulate a loss such that given a quadlet
Q = {q, p, i, n} - (i) p and n lie far in space (margin m)
(ii) i lie near to p with some margin m′(< m) (see Fig. 2(b)).
We can derive constraints to push f(n) away from local clus-
ter defined by T = (f(q), f(p), f(i)) and model the relation
between f(n) and T . A natural approximation to this dis-
tribution is a 3D sphere, S centered at the centroid XG of
triangle4f(q)f(p)f(i), and radius, R large enough to engulf
T . Mathematically, the Radial loss would consist of minimiz-
ing the following:

Lradial(Q) =
[
(cR)2 − ||f(n)−XG||22

]
+

(1)

where R = max{||f(q) − XG||2, ||f(p) − XG||2, ||f(i) −
XG||2} and XG = (f(q)+f(p)+f(i))/3. Thus, f(n) should
be at least at a distance of cR from the center of the sphere.
Such value of R always keeps at least one of the points in
T on the surface and rest of them inside the sphere. c is the
multiplier that decides the margin between f(n) and XG and
its value should be such that f(n) is sufficiently far enough
from all points in T . We use the following theorem to decide
the margin, cR by getting a lower bound on c.

Theorem 3.1. If Lradial(Q) = 0 using c ≥ 3, achieves suffi-
cient separation of f(n) from T .

Proof: Assuming that we have minimized Radial loss such
that Lradial(Q) = 0 which implies:-

D(f(n), XG) ≥ cR ≥ 3R

⇒ D(f(n), n⊥) +D(n⊥, XG) ≥ 3R

⇒ D(f(n), n⊥) ≥ 2R (2)

∵ dist(n⊥, XG) = R, See Fig. 2(b) where, n⊥ is the orthog-
onal projection of f(n) on the sphere S such that for any
vector ~r lying on the tangent plane, P we have (~r − ~n⊥) ·
( ~f(n)− ~n⊥) = 0. Since, any two points on or inside a sphere
can have a maximum separation of 2R, we get

max{D(f(q), f(p)), D(f(p), f(i)), D(f(q), f(i))} ≤ 2R
(3)

Now, consider point f(p) and construct 4f(p)n⊥f(n) as
shown in Fig. 2(b). Since, f(p) lies inside or on the sphere,
∠a > 90◦ is an obtuse angle which makes side opposite to it,
enp the longest.

Thus, enp = D(f(p), f(n)) > D(f(n), n⊥) (4)
⇒ D(f(p), f(n)) > D(f(p), f(i)) {From (2), (3), (4)}

1653



Similarly, for point f(q), we can prove D(f(q), f(p)) <
D(f(q), f(n)) & D(f(q), f(i)) < D(f(q), f(n)). Lastly, to
consider D(f(q), f(p)) < D(f(q), f(i)) we will simply add
a triplet loss to Lradial(Q) to obtain the following final loss:

LRadial(Q) = Lradial(Q) + Ltriplet(T ) (5)

Ltriplet(T ) = [m+ ||f(q)− f(p)||22 − ||f(q)− f(i)||22]+

To better understand the effect of optimizing this loss, we
compute its gradient with respect to f(n) and identify that the
gradient pushes f(n) radially outwards away from the center
of local cluster, XG defined by T by considering interaction
with f(q), f(p), f(i) (see Fig. 2(b)):

−∂LRadial(Q)/∂f(n) = 2(f(n)−XG) (6)

4. DATASETS

To evaluate our approach, we use the following datasets1:
(a) Sports dataset for the simultaneous clip and critical clip
detection, (b) Dog-Birds(DB) dataset for FgVR
Sports Dataset: It consists of 2 min long 25 annotated
Youtube club soccer highlights. A total of 400 clips (180
critical clips) are annotated and extracted at 20 fps. For
CCD, frames corresponding to the event when the ball is hit
towards the goal (highlighted frames in Fig. 1) constitute the
‘critical event’. Due to involved inherent subjectivity in the
task, annotation was done by 10 users. In case of inter-user
disagreement, only the frames with maximum agreement
amongst users were retained as critical.
Dog-Birds Dataset: It consists of 307 videos each 15-20 secs
long from two classes:- (1) Dogs (9 sub-classes, 135 videos)
and (2) Birds (12 sub-classes, 172 videos). Each sub-class has
on average 10 training videos and 5 test videos. 20 fps is used.

5. RESULTS AND EVALUATION

5.1. Evaluation Metrics

Fine-grained Video Retrieval (FgVR): Following metrics
are used to capture order-preserving fine-grained and coarse-
grained level similarity:

Order-preserving fine-grained video/clip similarity:
(a) Quadlet Precision (QP) is defined as the percentage of
quadlets being correctly ranked. A given quadlet, Q =
(q, p, i, n), is correctly ranked in terms of similarity if
p > i > n. (b) Normalized Discounted cumulative gain
(NDCG) measures the usefulness, or gain, of a clip based on
its rank in the retrieved list. The gain is accumulated from
the top of the result list to the bottom, with the gain of each
retrieved sample discounted at lower ranks.

Coarse grained video/clip similarity: (a) Triplet Preci-
sion (TP) relaxes the hard constraint of order preserving across

1Dataset Link: https://gofile.io/?c=8aphlD

Fig. 3: Visual illustration of retrieved ranking order for pro-
posed and baseline methods. Red box represents the irrelevant
samples (negatives), green box represents the relevant samples
(positives), and blue box represents the intermediately relevant
samples (intermediates).

positive and intermediate samples. It is defined as the percent-
age of triplets being correctly ranked. A triple T = (q, p, n)
is correctly ranked, if the ranking order is p > n. (b) Mean
Average Precision (MAP) is the mean of average precision,
across all the test/query samples.
Shot Boundary and Critical Clip Detection (SBD & CCD):
We have used Precision, Recall and F1 to measure the quality
of both SBD and CCD; where, for SBD, TPs, are correctly
marked cuts, FPs are the number of undetected cuts and FNs
are number of falsely detected cuts. While for CCD, precision
is the probability that an assumed clip by the model is actually
a critical clip while recall is the fraction of existing critical
clips detected by the model.

5.2. Experimental Settings

Training: For the AlexNet model, we have used: 512 filters
for fully connected layer, Xavier as weight filler, learning
rate multiplier = 10 and decay rate multiplier = 1. We have
empirically set margin parameters: g1 = 0.7, g2 = 0.3, g3 =
0.5, m = 0.3 and c = 3 giving best separation between the
samples. For CCD and FgVR, each sample in Q consists of
40 frames and 100 frames respectively. In CCD, quadlets are
generated (see Sec. 3) when q is sampled from ’critical clip’
and triplets are generated (q, p from same clip and n from next
consecutive clip) when q is sampled from ’non-critical clip’.
In latter, LRadial = L1(q, p, n) is minimized.
Testing: For simultaneous detection of shot/clip boundaries
and critical clips, we first identify hard-cuts in a video. For this,
we perform a sliding window operation (stride = 1, window
size=40 frames) on the video to generate the encoding of
the frames within the window. We then analyze the plot of
||f1 − fn||n>1

2 ; where, f1 is the feature encoding of first 40
frames of a clip, n is the window ID and fn is the encoding
of nth window (shown in Fig. 4). At n = No, sudden change
in the slope is observed due to appearance of first frame from
the consecutive clip (see Fig. 4(a),(c)). Thus, a hard-cut
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Fig. 4: Graphs (a) and (c) are first used to determine hard-cuts ((No − 1) shown in red dots after which frames from next clip
start appearing in the window). Then, graphs (b) and (d) show the trend (‘increasing’ for critical or ‘flat’ for non-critical) in the
identified Clips (Clip-1,5). The Window ID is plotted on the X-axis and L2 difference on Y-axis.

Prec Recall F1(%)
PySceneDetect 47.95 80.77 60.17
ShotDetect 49.10 73.0 48.70
SVD-SBD 38.30 62.0 47.35
DeepSBD 51.60 85.13 64.25
Triplet 80.50 85.13 82.75
Radial Loss (Ours) 86.67 88.89 87.77

Table 1: Model performances in Shot Boundary Detection

QP(%) NDCG TP(%) MAP
3D-CNN 25.89 68.65 57.36 45.45
Triplet 46.62 63.91 73.9 45.86
Quadruplet-1 51.20 66.07 75.61 46.14
Quadruplet-2a 50.90 65.99 75.80 45.99
Quadruplet-2b 50.85 64.03 75.64 44.19
Radial Loss (Ours) 60.70 69.80 78.12 48.08

Table 2: Model performances in Fine-grained video retrieval

exists between last two frames of window No. Continuing in
a similar fashion for the remaining video, we reset the f1 to
first window of the clip following a hard-cut. The trend in the
plot of identified clip (||f1 − fn||1<n<No

2 ) is then analyzed to
determine if the clip is critical (as shown in Fig.4(b),(d)). It
is observed in the dataset that a critical event usually appears
at the end of the clip. Thus, an increasing trend determines
that the clip is critical (∵ dist(fq, fi) > dist(fq, fp)), where
fq , fp and fi are feature embeddings of windows constituting
query, positive and intermediate samples respectively. For non-
critical clips with no intermediate samples, positive samples
should lie at similar distances from query (∵ dist(fq, fp1

) ∼
dist(fq, fp2

)) obtained in Fig. 4(c), (d).

5.3. Baselines

We utilize the following baselines for comparison along with
specifications mentioned in parentheses for the two tasks.
Shot Boundary Detection: (i) PySceneDetect [14] (threshold
= 30), (ii) ShotDetect [15] (threshold = 30), (iii) SVD-SBD
[16], (iv) DeepSBD [17] (segment length=16, overlap=8).
Fine-grained Video Retrieval: (i) 3D-CNN [18], (ii) Triplet
[19], (iii) Quadruplet-1 [4] (use loss function and quadruplet
sampling strategy), (iv) Quadruplet-2(a,b) [20] (use loss func-
tion and two sampling strategies - where negative samples
come from (a) both negative & intermediate categories, and
(b) only from the negative class).

5.4. Discussion

Shot Boundary Detection: Proposed framework has the high-
est precision and recall of all the models (Table 1). Low pre-
cision in baselines is observed due to the excess number of
false positives that are detected mostly in shots with significant
scene changes in the same clip. However, proposed framework
significantly outperforms the baselines for SBD due to better

separation in the embedding space.
Critical Clip Detection: In absence of existing baselines for
the novel task of CCD, we report the results of proposed frame-
work using Radial Loss - Precision=55.81%, Recall=72.72%,
F1=63.15%. In Fig. 4, via graphs we demonstrate the proce-
dure used to compute results for SBD and CCD.
Fine-grained Video Retrieval: Using NDCG and QP, in Ta-
ble 2 we showcase superior performance of Radial Loss in
order-preserving fine-grained ranking task. The baselines per-
form poorly because they either learn fine-grained categoriza-
tion (3D-CNN) or consider pairwise losses to separate positive
and negative samples from each other without factoring in the
intermediate samples. Hence, their optimization function does
not preserve the order across the fine-grained categories as
shown in Fig. 3. Radial loss tries to ensure that the relevancy
is maintained even in lower rank-orders achieving higher sepa-
ration between intermediate and negative samples achieving
high NDCG values shown in Table 2. We use TP and MAP
to show the effectiveness of the proposed framework in the
coarse-grained retrieval task where the aim is to maintain the
order between the q, p and n. From Table 2, we can see that
for both TP and MAP ranking, our framework performs better
than the existing baselines.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an end-to-end quadlet based
CNN-LSTM network which uses Radial Loss to learn fine-
grained video similarity metric. The approach is validated on
two novel tasks: Fine-grained Video Retrieval and Critical Clip
Detection. The proposed methodology outperforms baseline
models in clip segmentation and achieves high performance
in novel tasks CCD, FgVR. In future, we plan to extend the
DB Dataset to a multi-class dataset for the task of FgVR and
explore other notions of criticality for the task of CCD.

1655



7. REFERENCES

[1] Yu-Gang Jiang, Chong-Wah Ngo, and Jun Yang, “To-
wards optimal bag-of-features for object categorization
and semantic video retrieval,” in Image and video re-
trieval, 2007.

[2] BV Patel and BB Meshram, “Content based video re-
trieval systems,” arXiv, 2012.

[3] Florian Schroff, Dmitry Kalenichenko, and James
Philbin, “Facenet: A unified embedding for face recog-
nition and clustering,” in CVPR, 2015.

[4] Marc T Law, Nicolas Thome, and Matthieu Cord, “Learn-
ing a distance metric from relative comparisons between
quadruplets of images,” International Journal of Com-
puter Vision, 2017.

[5] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi
Huang, “Beyond triplet loss: a deep quadruplet network
for person re-identification,” in CVPR, 2017.

[6] Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuan-
qing Lin, “Deep metric learning with angular loss,” in
ICCV, 2017.

[7] Colin Lea, Austin Reiter, René Vidal, and Gregory D
Hager, “Segmental spatiotemporal cnns for fine-grained
action segmentation,” in ECCV, 2016.

[8] Colin Lea, René Vidal, and Gregory D Hager, “Learning
convolutional action primitives for fine-grained action
recognition,” in ICRA, 2016.

[9] Colin Lea Michael D Flynn René and Vidal Austin Reiter
Gregory D Hager, “Temporal convolutional networks for
action segmentation and detection,” arXiv, 2017.

[10] Sebastian Stein and Stephen J McKenna, “Combining
embedded accelerometers with computer vision for rec-
ognizing food preparation activities,” in Ubicomp, 2013.

[11] ZongYuan Ge, Chris McCool, Conrad Sanderson, Peng
Wang, Lingqiao Liu, Ian Reid, and Peter Corke, “Exploit-
ing temporal information for dcnn-based fine-grained
object classification,” in Digital Image Computing: Tech-
niques and Applications (DICTA), 2016.

[12] Yixin Gao, S Swaroop Vedula, Carol E Reiley, Narges
Ahmidi, Balakrishnan Varadarajan, Henry C Lin, Lin-
gling Tao, Luca Zappella, Benjamın Béjar, David D Yuh,
et al., “Jhu-isi gesture and skill assessment working set
(jigsaws): A surgical activity dataset for human motion
modeling,” in M2CAI, 2014.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton,
“Imagenet classification with deep convolutional neural
networks,” in NIPS, 2012.

[14] “Pyscenedetect,” https://pyscenedetect.
readthedocs.io/en/latest/.

[15] “Shot detect,” https://github.com/johmathe/
Shotdetect.

[16] Z. M. Lu and Y. Shi, “Fast video shot boundary detection
based on svd and pattern matching,” IEEE Transactions
on Image Processing, 2013.

[17] Ahmed Hassanien, Mohamed Elgharib, Ahmed Selim,
Mohamed Hefeeda, and Wojciech Matusik, “Large-scale,
fast and accurate shot boundary detection through spatio-
temporal convolutional neural networks,” arXiv, 2017.

[18] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Tor-
resani, and Manohar Paluri, “Learning spatiotemporal
features with 3d convolutional networks,” in ICCV, 2015.

[19] Jiang Wang, Thomas Leung, Chuck Rosenberg, Jinbin
Wang, James Philbin, Bo Chen, Ying Wu, et al., “Learn-
ing fine-grained image similarity with deep ranking,”
CVPR, 2014.

[20] C. Weihua, C. Xiaotang, Z. Jianguo, and H. Kaiqi, “Be-
yond triplet loss: a deep quadruplet network for person
re-identification,” in CVPR, 2017.

1656


		2019-03-18T11:07:04-0500
	Preflight Ticket Signature




