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ABSTRACT
Modern video coding standards use hybrid coding techniques
to remove spatial and temporal redundancy. However, ef-
ficient exploitation of statistical dependencies measured by
a mean squared error (MSE) does not always produce the
best psychovisual result. In this paper, we propose a pixel-
level texture segmentation approach based on visual relevancy
to improve the coding efficiency of newly developed AV1
video codec. Our method performs semantic segmentation
and combines regions with similar texture in a video frame.
These texture regions are then reconstructed using a motion
model at the decoder instead of inter-frame prediction. A
Convolutional Neural Networks based semantic segmentation
combined with post-processing generates pixel-level texture
masks that are more accurate compared to block-based tex-
ture masks in our previous work. We show that for many
standard test sets, the proposed method achieves significant
data rate reductions with improved visual quality.

Index Terms— texture segmentation, convolutional neu-
ral networks, video compression, AV1

1. INTRODUCTION

Modern video codecs such as HEVC [1] and AV1 [2] use
hybrid coding techniques consisting of motion compensation
and 2D transform to remove spatial and temporal redundancy.
However, efficient exploitation of statistical dependencies
measured by a mean squared error (MSE) does not always
produce the best psychovisual result. Some regions in the
frame, e.g., texture, are perceptually insignificant where an
observer does not notice any difference without observing the
original video sequence, but are costly to encode. Texture
based approaches have been shown to improve the coding
efficiency for “perceptually insignificant” regions [3, 4, 5, 6].
We explored similar ideas in our previous work [7], where
we do not encode the texture regions, but instead these re-
gions are reconstructed at the decoder based on a motion
model. A Convolutioanl Neural Networks (CNN) based tex-
ture analyzer was developed to identify the texture regions
in a frame and generates block-based texture masks. The
displacement of the entire texture region is modeled by a set
of motion parameters. At the decoder, instead of perform-
ing motion compensation prediction to reconstruct blocks in
the texture region, the texture blocks are warped from the

reference frames towards the current frame using the motion
parameters.

While the proposed approach in [7] can achieve a data rate
saving of 1% to 13% compared to the baseline when imple-
mented using AV1 with satisfactory visual quality, the block-
based texture masks cannot always accurately represent the
texture regions. The block-based texture masks can be seam-
lessly integrated into AV1 since the common coding units are
blocks. However, it can sometimes cause noticeable visual ar-
tifacts when an identified texture block consist of small struc-
tural region. In addition, the smallest texture block size in
[7] was 32× 32 in order to avoid detecting small moving ob-
jects, but at the same time limits the size of identified texture
regions and reduces potential data rate savings. To illustrate
this, an example is shown in Figure 1 where part of the bow
of the white boat and the person’s head are identified as tex-
ture region in [7] since the majority of that block is texture.
The bow of the white boat and the person’s head show flick-
ering artifacts since they have different motion trajectory than
the river. There is also some texture regions in the river not
identified due to the large block size used in the texture an-
alyzer. The methods proposed in this paper address both of
these issues.

Recent advances in deep neural networks have led to
a renewed interest in semantic scene segmentation [8, 9,
10]. Large-scale datasest like ImageNet [11], COCO [12]
and ADE20K [10] have enabled improved performance for
these tasks. For example, the Fully Convolutional Network
(FCN) [8] is one of the most commonly used network archi-
tectures for semantic scene segmentation. The major issue
with FCN [8] is the lack of global contextual information to
categories global scene which could lead parsing error. The
pyramid scene parsing network(PSPNet) [9] addresses this
issue by adding a global pyramid pooling module to extract
global information from the image.

In this paper, we incorporate semantic scene segmentation
into video compression by generating pixel-level texture seg-
mentation masks to represent “perceptually insignificant” re-
gions in a frame and use motion models to reconstruct the tex-
ture regions at the decoder to improve the coding efficiency.
We introduce a modified texture mode in AV1 and show that
the proposed method can achieve significant data rate reduc-
tions with improved visual quality.
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Fig. 1. (a) is the reconstructed frame by AV1 original codec. (b) is the block-based mask. (c) is the reconstructed frame using
block-based mask. (d) is the pixel-level mask. (e) is the reconstructed frame using pixel-level mask.

2. PIXEL-LEVEL TEXTURE SEGMENTATION
Our previous work [7] using block-based texture analyzer has
shown data rate savings in texture regions. However, block-
based texture mask cannot accurately represents texture re-
gions and may cause coding artifacts. Therefore, a pixel-
level texture mask generation is described in this section to
obtain more accurate texture masks. First, we use a semantic
scene segmentation method described in Section 2.1 to gener-
ate masks for different semantic classes. Then in Section 2.2,
we describe how several semantic classes with similar tex-
ture are grouped into four texture classes to produce a single
pixel-level segmentation mask for each texture class.

2.1. Semantic Scene Segmentation
Stuff and objects are two high-level categories often used in
semantic scene understanding [9, 13] . Stuff refers to back-
ground areas such as sky, grass, and they usually contain large
texture areas, and objects are more likely to appear in the fore-
ground.

Fig. 2. Two steam cascade framework.

In this paper, we use a two-stream cascade network [13]
to generate semantic scene segmentation shown in Figure 2.
The stuff stream generates stuff segmentation and objectness
map, while the object stream generates object segmentation
using the objectness map from the stuff stream. The final seg-
mentation combines the results from stuff stream and object
stream. The ResNet50 [14] with dilated convolutions [15, 16]
strategy is used as encoder to extract feature map. For the
decoder, we use pyramid pooling module from PSPNet [9]
followed by bilinear upsampling. The pyramid pooling mod-
ule uses four different sizes of CNN receptive field to repre-
sent global contextual information contained in four pyramid
scales. The pyramid pooling module reduces the scene pars-
ing errors by considering global contextual relationship in a

scene. Cross-entropy loss is used at the end of each stream.
The total training loss is the stuff steam loss plus the object
stream loss as expressed in Equation 1, where for a givel pixel
x, N is the number of stuff classes and M is the number of
object classes, px,i is the predicted probability of pixel x for
class i and yx,i is the binary indicator (0 or 1) for that class.

Ltotal = −
N∑
i=1

yx,i log(px,i)−
M∑
j=1

yx,j log(px,j) (1)

The pre-trained model was obtained from a scene pars-
ing benchmark, MIT ScenParse150 [13], to generate seman-
tic segmentation. The model was trained on a subset of a
densely annotated dataset, ADE20K [10], with top 150 cat-
egories ranked by their pixel ratios in which 35 of them are
stuff classes, 115 are object classes. The pixel accuracy of
this model is 80.23% as reported on the benchmark [13].

2.2. Texture Mask Grouping
We define four perceptually insignificant texture classes that
are commonly observed in nature scenes. The four texture
classes are based on groupings of different semantic classes
defined in ADE20K dataset [10] that have similar textures.
Texture class 1 includes earth and grass semantic classes; tex-
ture class 2 includes water, sea and river semantic classes;
texture class 3 includes mountain and hill semantic classes;
texture class 4 includes tree semantic class. A single pixel-
level mask for each texture class is generated by combining
semantic segmentation within each group. Figure 3 shows an
example of pixel-level texture segmentation mask for texture
class 2, which combines semantic segmentations of water and
river.

3. MODIFIED TEXTURE MODE IN AV1
In this section, we describe how we modified the texture mode
we introduced to AV1 in [7] to incorporate the pixel-level tex-
ture masks described in Section 2.

3.1. Modified Texture Mode Encoder Design
Figure 4 illustrates the design of integrating pixel-level tex-
ture masks into AV1 encoding. The encoder fetches the pixel-
level texture masks for the current frame and selected refer-
ence frames. Based on the texture region in the current frame
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(a) Semantic segmentation (b) Texture mask for class 2

Fig. 3. An example of pixel-level texture segmentation for
video sequence bridgefar. Texture mask for class 2 contains
semantic segmentations of water and river in this example.

indicated by the texture masks, a set of texture motion param-
eter that represents the global motion of the texture region is
calculated for each reference frame. We “overlap” the pixel-
level texture masks on the current frame and reference frame
to check if a block is completely covered by the texture mask.
If it is, the block is considered a texture block and uses the
texture mode as shown in Figure 5. For blocks coded using
the texture mode, pixels within the blocks are reconstructed
at the decoder using the estimated texture motion parameters
for the entire texture region, thus no motion prediction resid-
uals need to be coded and transmitted. Texture blocks are
reconstructed by warping the texture region from the refer-
ence frame towards the current frame. At the decoder, the
bitstream is decoded the same as AV1 baseline since there is
no syntax change to the AV1 bitstream and the reconstruction
of the texture blocks are performed outside the codec.

Fig. 4. Design of texture mode encoder

In [7], based on the selection of coding orders and choices
of reference frames for texture region reconstruction, we in-
vestigated three different implementations and found the best
implementation with respect to data rate savings and per-
ceived quality to be tex-cp, which we use in this paper. The
coding structure of tex-cp has fixed group interval of eight
frames. It enables texture mode for every other frames. The
texture blocks use the previous and the next frames as ref-
erence frames and take the average of two warped region as
prediction.

Fig. 5. Texture mode decision

3.2. Motion Model for Texture Regions
In our previous work [7], the block-based texture masks can
only differentiate between texture vs. non-texture regions.
We select only the largest texture region in a frame to be con-
sidered for encoding using the texture mode. We used the
global motion tool [17] in the AV1 codec to perform block
warping for the texture regions. Using the AV1 codec syntax,
one set of motion parameters for each reference frame is sent
to the decoder in the compressed frame header.

As described in Section 2, the pixel-level segmentation
method can generate up to four pixel-level non-overlapping
texture masks for each texture class per frame. In this paper,
we allow the texture masks to contain more than one class
of texture without changing the codec syntax. The encoder
estimates a set of motion parameters for each class of texture.
We combine texture masks that have the same set of motion
parameters and use one set of motion parameters to represent
the largest combined texture masks.

4. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed method using
pixel-level texture mask, data rate savings at four quantization
levels (QP=16, 24, 32, 40) are calculated for low and high res-
olution videos from standard video test sequences. We use the
original AV1 codec as the baseline for comparison. We also
compare the pixel-level texture segmentation results with our
previous work [7] which uses block-based single class tex-
ture mask with our AV1 texture mode. All three methods use
the same golden frame group structure that has fixed golden
frame and a group interval of eight frames. Results for the test
videos are shown in Table 1. BM in the tables refers to block-
based texture segmentation method [7] and the PM refers to
the proposed pixel-level texture segmentation method. The
data rate saving is calculated as

Pbit = (R−Rb)/Rb × 100% (2)

where Pbit represents data rate saving, R represents the bit-
stream size using BM or PM method, Rb represents the bit-
stream size of the AV1 baseline method. A negative value
indicates a reduction in the codec’s bitstream data rate com-
pared to the AV1 baselines.

In general, compared to the AV1 baseline, the coding per-
formance of the both BM and PM shows larger data rate sav-
ings with low QP. However, as QP increases, the data rate sav-
ing decreases. As shown in the tables, football, waterfall and
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Table 1. AV1 data rate savings comparison between block-level (BM) and pixel-level (PM) texture segmentation. A negative
value indicates a reduction in the codec’s bitstream data rate compared to the AV1 baselines.

Resolution Video
Data rate saving(%)

QP=16 QP=24 QP=32 QP=40
BM [7] PM [proposed] BM PM BM PM BM PM

low res

coastguard -7.8 -9.14 -6.99 -8.01 -4.7 -5.72 -1.9 -2.13
flower -10.55 -13 -8.66 -10.78 -5.96 -4.95 -4.95 -4.95

football -0.35 -0.63 0.02 -0.08 0.01 0.01 0.02 0
waterfall -4.63 -13.11 -3.96 -7.21 0.33 -1.3 3.74 3.48

netflix aerial -8.59 -9.15 -2.15 -5.59 0.68 -1.05 4.59 4.01

high res intotree -5.32 -9.71 -4.32 -9.42 -1.99 -8.46 2.83 -4.92
tractor -3.32 -5.45 -2.25 -4.40 -1.68 -3.90 0.3 -2.93

netflix aerial have worse coding performance than the AV1
baseline at high QP. The reason is that at high QP, the high
compression ratio results in many zero residual blocks thus
there is limited margin for data rate saving using texture based
methods. In addition, the texture based method requires a few
extra bits for the texture motion parameters, and some extra
bits for using two reference frames in compound prediction
for all the texture blocks.

Compared to the BM method, the proposed PM method
shows larger data rate savings. For the BM method, the fixed
size blocks for CNN based texture analyzer need to be large
enough to ensure classification accuracy. While for the PM
method, there is no such limitation so we use 16 × 16 as the
minimum size for texture blocks instead of 32×32 in the tex-
ture mode. Therefore, there are more pixels in a frame that
are reconstructed using the texture mode in the PM method
leading to larger data rate savings. We did not using smaller
texture blocks because further block splitting will require ex-
tra bits to send the motion information for these blocks. Table
2 shows the texture region percentage, defined in equation 3
as average percentage of the regions that are reconstructed
using texture mode within the frames where texture mode is
enabled.

Ptex = (

Ftex∑
j=1

(

∑Nj

i=1 Bij

W ×H
))/Ftex × 100% (3)

where Ftex is the number of frames that enables texture mode,
Nj is the number of texture blocks in the jth frame, Bij is the
block size of texture block i in frame j, W and H are frame
width and height.

In general the texture region percentage of PM method is
larger than that of the BM method, thus the increase in data
rate saving. The texture region percentage of PM for flower
is smaller because the texture mask of BM contains sky and
flowerbed area as it fails to identify them as two different
classes of texture. Although texture mask of PM only con-
tains flowerbed area, the sky area is very homogeneous which
has small residual using AV1 baseline. Therefore, we still
achieve more data rate saving using PM than BM. The PM

Table 2. Texture region percentage
Texture region encoded BM (%) PM (%)

coastguard 37 41
flower 58 24

football 10 22
waterfall 61 77

netflix aerial 37 53
intotree 43 52
tractor 20 23

method also reduces flickering artifacts in some of the recon-
structed video when using the BM method. The pixel-level
texture mask can more accurately represent the perceptually
insignificant pixels. An example is illustrated in Figure 1 and
discussed in Section 1.

We have conducted a subjective test in our previous work
[7] to evaluate the visual quality of texture based coding
method. Results show that most of the times (77%), the
viewer can not tell the difference between the reconstructed
video by the original codec and the BM method. We observed
the quality of the reconstructed video by the PM method and
compare it with that of the baseline and the BM method.
There is no noticeable artifacts and the flickering artifacts
in the BM method due to inaccurate texture masks has been
significantly reduced.

5. CONCLUSION
In this paper, we improve the coding efficiency of AV1 codec
by introducing a texture segmentation based approach that
uses deep neural networks to perform pixel-level segmenta-
tion which identifies the texture region in a frame. The tex-
ture regions are then reconstructed based on a global motion
model instead of using inter-frame prediction. We combined
semantic segmentation with a few post-processing steps to
generate a pixel-level texture mask that is more accurate than
our previously proposed block-based texture method. We
show that for many standard test sets, the proposed method
achieved significant data rate reductions with improved visual
quality.
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