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ABSTRACT

Recently, neural networks were shown to improve video and image
intra prediction significantly. In this paper, the properties of different
architectures for neural network-based intra prediction are evaluated.
This includes an analysis of the properties of convolutional neural
networks used for this purpose, showing that they outperform fully
connected ones especially for complex and low resolution content.
Also, the usage of separate networks for luma and chroma predic-
tion, which are able to perform a learned cross-component predic-
tion, is proposed as this is clearly beneficial for the prediction qual-
ity. Furthermore, a new way of signaling a neural network-based in-
tra prediction mode in HEVC is investigated. In total this improves
the compression performance in terms of average BD-rate changes
by −2.0% for the luma and by −1.5% for the chroma channels.

Index Terms— intra prediction, convolutional neural networks,
compression, chroma, cross-component prediction

1. INTRODUCTION
Most image and video coding algorithms use intra prediction to
reduce the spatial redundancy within a picture or frame before trans-
form coding the prediction residual. In current video compression
standards such as HEVC [1], this prediction is performed by apply-
ing different versions of linear combinations to a reference sample
set that contains the already decoded directly neighboring pixels.
However, due to increasing hardware capabilities more complex
methods for intra prediction have recently been developed, includ-
ing neural network-based approaches.
Among the conventional, recently proposed methods are adding
more [2] and wider [3] angles to the prediction modes, the usage
of more reference lines [4], [3] and an improved cross-component
prediction method that regards the available luma information of the
same block when generating the chroma prediction [5], [6].
Conceptionally, intra prediction is very similar to inpainting tasks,
for which neural network-based methods as in [7], [8] and [9] are
already state-of-the-art. Unfortunately, there are two very important
differences that hinder the direct application of these same methods
for compression. First, hard complexity restrictions are required
for real-time video decoding. Second, inpainting aims to generate
a patch that looks reasonable to a human viewer, while for com-
pression the difference between the original and its prediction needs
to be minimized. Especially, in regions where several reasonable
continuations of a context are equally probable, the best solution
minimizing the expected coding costs of the residual is usually not
looking reasonable to humans, but returning the statistically ex-
pected value for each samples.
A first approach for neural network-based intra prediction for video

coding was published in [10] and improved in [11], showing signif-
icant BD-rate gains compared to HEVC. Interestingly, this method
relies exclusively on fully connected neural networks although
convolutional architectures have outperformed those in most other
image related tasks. More recently, in [12] a network was tested
that contains both convolutional and transpose convolutional layers,
while in [13] recurrent networks were investigated for intra predic-
tion. Both approaches also give further insights into preprocessing
and training methods suitable for networks with this purpose.
Another approach using very shallow and likewise exclusively fully
connected networks was proposed in [14] and further refined in [15],
[16] and [17]. This method showed that significant gains can also be
achieved as an addition to the VTM reference software [18] and that
this is possible with a very small decoding time increase. From these
results it can be concluded that neural networks can be beneficial for
intra prediction even with hard complexity constraints. However,
there are still a variety of issues related to the use of neural networks
for this task that have not yet been investigated.
From the existing approaches introduced so far, it is hard to tell
which network architecture is suited best, as most of them are
trained on different training material which usually has a significant
impact on the results. Only the authors of [13] compare the per-
formance of their recurrent architecture to that of a fully connected
network trained on the same set. However, this test was restricted to
the relatively small block size of 8x8 samples. Therefore, it cannot
show how the different architectures would perform with larger,
more complex reference areas.
In addition, so far all approaches are either aiming only at the predic-
tion of luma blocks [14] or generate the prediction for all channels
with the same network [11] disregarding both the different statistics
of chroma channels and the additional available information [6].
In this paper we propose a convolutional architecture for intra pre-
diction that unlike the algorithm in [12] does not use transpose
convolutional layers and compare its performance to that of a purely
fully connected network trained on the same data. We extend the
analysis of optimal loss functions from [13] by comparing the results
of the SATD loss with the L1 norm and propose a novel approach for
signaling the usage of a network base prediction mode. Likewise,
the usage of separately trained networks for the chroma prediction
integrating the cross-component information is evaluated.

2. PREDICTION NETWORKS
In HEVC [1], the intra prediction is performed at four different block
sizes N ∈ {4, 8, 16, 32} and separately for all three channels. We
chose to predict the two chroma channels jointly, as the information
available at the decoder for these predictions are identical and this
reduces complexity. This leaves a total of eight different cases for
which a prediction network needs to be designed and trained.

1607978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



4 N N

mandatory reference
optional reference
prediction area

(a) Reference and prediction
area for a NxN luma block

Convolutional Layer
Fully Connected Layer
Leaky ReLU
Reshape Operation

Luma Input
Chroma Input
or Output

(b) Example architecture for the prediction of a 4x4 chroma block with two convolutional layers (C2) and the CRCO
cross-component branch
Fig. 1: Illustration of the reference area and network architecture

2.1. Architecture
Both exclusively fully connected and convolutional neural networks
were tested for all eight cases, in order to investigate the possible
gains at various complexity levels as well as the property differences
caused by the addition of convolutional layers. As the last four
layers of the convolutional architectures used by us are unlike in
[12] fully connected, the exclusively fully connected architecture
(C0) can be seen as a variant of the convolutional one with zero
convolutional layers.
In the luma case, we use four reference lines as a trade-off between
the additional precision gained and the increasing complexity caused
by using more lines. The length of the reference lines is kept at 2N
as in HEVC, leading to the L-shaped reference area shown in Fig-
ure 1a. As we do not use any padding, the number of reference lines
limits the possible kernel sizes and combinations thereof. Pretests
showed that the combination (C2) of a 3x3 kernel as a first convolu-
tional layer and a 2x2 kernel as second layer outperformed all other
combinations. Using a 4x4 kernel (C1) as a single convolutional
layer performed slightly worse, but is also by far less complex.
Thus, these two architectures were further investigated. For all but
the last layer a leaky rectified linear unit (ReLU) is used as activation
function. The output layer has no activation function and as many
nodes as the number of pixels to be predicted.
In the chroma case, the prediction of both chroma channels is gen-
erated jointly. Thus, the input is also used from both channels and
the output has twice the number of nodes than the luma version.
Otherwise, the network architecture is the same as for the luma case.
Further, it was already shown for traditional prediction methods
that including the information from the luma channel in predicting
chroma blocks gives significant gains [6]. Hence, an additional op-
tion (CRCO) to include cross-component prediction into the network
was implemented. As in the commonly used 4:2:0 subsampling the
chroma channels have a lower resolution than the luma channel,
these samples could not simply be fed into the network as a third
input channel to the existing input. Instead, they are processed in a
separate convolutional branch up to the first fully connected layer, as
shown in Figure 1b. In all architecture variants the additional luma
branch has as many convolutional layers as the main one.

2.2. Training
All networks are trained on samples from 104 sequences with vary-
ing resolutions applying the Adam-optimization algorithm [19],

while using eleven additional videos to generate a validation set. As
the number of training examples that can be extracted from these
sequences decreases with increasing block size, overfitting effects
occur more severely for large block sizes and chroma prediction
networks than for smaller luma prediction blocks. Thus, it can be
expected that an even larger training set would still strongly increase
the prediction quality. To decrease the similarity of samples from
consecutive frames, both horizontal and vertical flipping can be
applied during preprocessing. Likewise, the channel-wise mean
of the reference area is subtracted from both the reference and the
prediction area. Furthermore, some samples with low variance are
excluded from training, if too many samples of roughly the same
variance are already used. This makes the network adapt better to
high variance samples, which are less frequent in most videos, but
are especially difficult to predict and thus cause high bit rates. A full
description of the used training and validation sets as well as a list
of further training and architecture hyperparameters can be found on
the website accompanying this paper1.
Depending on the position of the block to be predicted, the actually
available reference area varies. In most cases, the mandatory refer-
ence area as marked in Figure 1a should be available for prediction,
if the block is not at the upper or left boundary of a slice or frame.
The availability of the area marked as optional reference depends
on the position within the CTU. In order to use this optional refer-
ence whenever possible without training different netwoks for each
availability case a masking scheme similar to the one presented in
[12] was applied. In our case each of the two optional areas is either
completely masked or completely available.

1http://www.ient.rwth-aachen.de/cms/icassp2019/

Loss Function L1 SATD
BQTerrace -1.51 % -1.61 %
BasketballDrive -1.97 % -2.30 %
Cactus -2.08 % -2.30 %
Kimono -2.61 % -3.17 %
ParkScene -2.75 % -2.85 %
AVG Class B -2.18 % -2.45 %

Table 1: BD-rate change for the Y channel when using network-
based intra prediction with different loss function compared to
HEVC. Both versions use the C0 architecture with CRCO and the
UP signaling mode.
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It was already shown in [13], that the SATD loss function with a
Hadamard transform performs better than the commonly used MSE
loss, when restricting the block size to 8x8. We additionally com-
pared the performance of the SATD loss in comparison to the L1
norm in an unconstrained video compression test. The L1 norm
was chosen as it already puts more weight on structures instead of
outliers than MSE. As shown in Table 1, networks trained with the
SATD loss outperforms the other version on every tested sequence.
Hence, it was used in all tests conducted in section 4. The result
confirms that the SATD function provides the best estimation of the
coding costs of the prediction residual among the functions tested
so far. Even closer approximations of the actual coding costs for
the transform coefficients are difficult to set up as loss functions as
these have to be derivable. Note that in all cases a small weight
regularization term was added to the loss function in order to reduce
overfitting.

3. MODE SIGNALING AND HM INTEGRATION
The networks described in Section 2 were integrated into the
HM16.9 reference software [20] as a 36th intra prediction mode
(IntraNN). In order to efficiently signal the usage of this mode for
the luma prediction, the most probable mode list was extended to
hold a fourth option by sending an additional bit when the third list
position would have been chosen otherwise. The IntraNN mode is
always placed on that list. If it was used in one of the neighboring
blocks, it is put in the position for that neighbor and the remaining
list is filled following the same rules as if there were only three list
positions and the neighbor using IntraNN had not been available.
Two different options were tested varying in where to place the
IntraNN mode, when it was not used in the neighborhood. In the
version END it is always placed in the last position, while in the
UP option the IntraNN mode is placed directly behind the modes
used in the neighborhood. In both cases the other list positions are
likewise filled according to the HEVC specifications.
For chroma prediction, the IntraNN mode can only be signaled by
specifying to use the same mode as for luma. Thus, it can only be
applied for chroma, if it has been used for the luma prediction of
that block as well. In order to evaluate the benefit of using a network
explicitly for chroma prediction, a version where IntraNN is only
applied to the luma channel as in [14] was also tested. In this version
the chroma intra mode will be signaled as if the corresponding luma
prediction unit would be predicted with planar mode.
For both luma and chroma prediction, the IntraNN mode is evaluated
during the rate-distortion optimization in the same way as other intra
modes. However, the IntraNN mode will not be used, if any part
of the mandatory reference is unavailable for prediction. The larger
mandatory reference area in the chroma case can cause the IntraNN
mode to be chosen for the luma channel of a prediction unit while
being unavailable for the chroma prediction of the same block. This
can lead to a decrease in the possible number of chroma prediction
modes. Note that neither the inclusion of the luma samples in the
chroma prediction nor any of the architecture variants presented here
have any effect on the signaling or mode availability.

4. EXPERIMENTS AND RESULTS
All coding experiments presented in this section were performed on
the first 100 frames from the classes B, C and D of the common
testing conditions [21] in all intra mode.

4.1. Network Architecture Comparison
In a first test the three different architectures with varying numbers of
convolutional layers (C0, C1 and C2) were compared to each other.

Architecture C2 C1 C0
BQTerrace -1.79 % -1.74 % -1.61 %
BasketballDrive -2.33 % -2.28 % -2.30 %
Cactus -2.46 % -2.43 % -2.30 %
Kimono -2.66 % -3.02 % -3.17 %
ParkScene -2.55 % -2.66 % -2.85 %
AVG Class B -2.36 % -2.43 % -2.45 %
BQMall -2.00 % -1.85 % -1.85 %
BasketballDrill -1.99 % -1.96 % -1.81 %
PartyScene -1.46 % -1.39 % -1.34 %
RaceHorses -1.89 % -1.84 % -1.75 %
AVG Class C -1.84 % -1.76 % -1.69 %
BQSquare -0.98 % -0.88 % -0.79 %
BasketballPass -1.85 % -1.51 % -1.49 %
BlowingBubbles -1.70 % -1.74 % -1.63 %
RaceHorses -2.43 % -2.30 % -2.00 %
AVG Class D -1.74 % -1.61 % -1.48 %
AVG All Classes -2.01 % -1.97 % -1.91 %

Table 2: BD-rate change for the Y channel compared to HEVC for
different architectures. In all three cases the SATD loss function,
CRCO integration and the UP signaling mode were used.

As can be seen in Table 2, the C2 architecture outperforms the other
architectures in terms of their BD-rate gains [22] on average. How-
ever, that does not hold true for all tested resolutions. While the ar-
chitectures with convolutional layers outperform the fully connected
variant by a comparably large margin on the lowest resolution, the
C0 version gives much better results on the HD sequences ”Kimono”
and ”ParkScene” and thus also on average on class B. An expla-
nation for this behavior could be, that the convolutional networks
capture the high variance content and complicated texture more of-
ten present in blocks from low resolutions sequences better, but are
therefore also more easily disturbed by noise.
In [12] it was stated that convolutional networks work better for the
prediction of larger blocks. This hypothesis was mainly based on
the theoretical consideration, that convolutional networks are usu-
ally better at processing stationary and multi-resolution structures
possibly occurring in the reference of larger blocks. However, when
analyzing our results for class B in more detail, we found that the C0
network is chosen more frequently than the C2 type for the predic-
tion of 32x32 luma blocks in every video, on average by 8.7%, while
C2 network is 3.3% more often used for luma 4x4 blocks, which is
the exact opposite of the expected behavior. This result is even more
surprising when considering that the SATD loss on the validation set
is always lower for the convolutional versions and that this differ-
ence increases with the block size. It indicates that convolutional
architectures are better at predicting the more complex structures for
which smaller block sizes are chosen by the RD-optimization.
On the other hand, it has to be noted that the architectures with con-
volutional layers are more complex than the fully connected ones.
Averaged over all block sizes the C1 version increases the number
of multiplications by a factor of 3.0 for the luma prediction com-
pared to the C0 version. For the C2 version this is even an increase
of 4.2 times. Thus, it depends on both the acceptable complexity and
the properties of the content, which architecture is best suited for an
intra prediction task.

4.2. Signaling Evaluation
In a second experiment, the positioning of the IntraNN mode on the
most probable mode list was evaluated. As described in Section 3
two versions were tested. In principal, the END signaling version
should cause less overhead when the IntraNN mode is not chosen,
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Version END, with CRCO UP, with CRCO Up, without CRCO UP, no chroma IntraNN
Channel Y U V Y U V Y U V Y U V
BQTerrace -1.75% -0.69% -0.76% -1.79% -0.84% -0.36% -1.66% -0.75% -0.79% -1.57% -0.26% -0.03%
Basket.Drive -2.24% -1.64% -2.08% -2.33% -1.64% -1.97% -1.83% -0.15% -0.88% -1.34% -0.05% -0.56%
Cactus -2.35% -1.95% -2.06% -2.46% -1.89% -2.05% -1.99% -1.24% -1.12% -1.60% -0.89% -0.50%
Kimono -2.42% -2.33% -1.75% -2.66% -2.46% -1.84% -1.71% -1.60% -1.41% -1.62% -1.46% -1.26%
ParkScene -2.44% -1.46% -1.99% -2.55% -1.75% -1.91% -1.87% -1.27% -1.82% -1.88% -0.79% -1.15%
AVG Class B -2.24% -1.61% -1.73% -2.36% -1.72% -1.63% -1.81% -1.00% -1.20% -1.59% -0.69% -0.62%
BQMall -1.97% -1.63% -1.56% -2.00% -1.62% -1.57% -1.71% -1.22% -1.05% -1.58% -1.37% -0.36%
BasketballDrill -2.00% -2.17% -2.03% -1.99% -2.42% -2.26% -1.21% -0.38% -0.74% -0.63% -0.17% -0.21%
PartyScene -1.46% -0.83% -0.95% -1.46% -0.86% -0.96% -1.31% -0.68% -0.70% -1.21% -0.68% -0.65%
RaceHorses -1.84% -1.20% -1.66% -1.89% -1.28% -1.44% -1.55% -0.90% -0.60% -1.22% -0.69% -0.49%
AVG Class C -1.82% -1.46% -1.55% -1.84% -1.55% -1.56% -1.45% -0.80% -0.77% -1.16% -0.73% -0.43%
BQSquare -1.00% -0.56% -0.01% -0.98% -0.65% -0.28% -1.04% -0.55% 0.00% -1.00% -0.28% 0.20%
BasketballPass -1.78% -1.76% -1.19% -1.85% -1.67% -1.36% -1.39% -1.37% -0.82% -1.21% -0.26% -0.58%
BlowingBubbles -1.69% -1.74% -0.71% -1.70% -1.54% -0.97% -1.40% -0.60% -0.43% -1.32% -0.58% -0.37%
RaceHorses -2.35% -1.92% -2.14% -2.43% -1.40% -2.13% -1.91% -1.34% -1.34% -1.58% -0.79% -0.78%
AVG Class D -1.71% -1.50% -1.01% -1.74% -1.32% -1.19% -1.44% -0.97% -0.65% -1.28% -0.48% -0.38%
AVG All Classes -1.94% -1.53% -1.45% -2.01% -1.54% -1.47% -1.58% -0.93% -0.90% -1.37% -0.57% -0.52 %

Table 3: BD-rate change compared to HEVC for the different signaling modes (column 1 and 2), without the cross-component integration
(column 3) and without IntraNN for the chroma channel (column 4). In all cases the SATD loss function was applied for training and the C2
architecture was used.

while in the UP version the signaling costs for the IntraNN mode
itself are lower. The results are shown in the first two columns of
Table 3. In most cases, the UP variant gives slightly better BD-
rate gains than the END version especially for the luma channel.
Note that although there are additional signaling costs caused in both
versions even if the IntraNN mode is not used, there is no sequence
with any loss. However, the END version comes much closer to that
than the UP version. This clearly shows that the IntraNN mode is
chosen often enough that the costs for the usage of the IntraNN mode
outweights the additional costs for choosing other modes caused by
the signaling scheme.

4.3. Dedicated Chroma Prediction
Finally, the effects of using a neural network-based chroma predic-
tion as well as the integration of the cross-component information
into this process were investigated. Therefore, a version where
IntraNN is not used for the chroma channels is compared with ver-
sions where the chroma prediction is done with or without the CRCO
branch. The resulting BD-rates are shown in the second, third and
fourth column of Table 3. It can be seen, that the cross-component
version outperforms the version not using network-based chroma
prediction on every channel and sequence, on average by −0.6% on
the luma and by −0.97% and −0.95% on the chroma channels.
The version which includes the network-based chroma predic-
tion without CRCO likewise outperforms the version without the
network-based chroma prediction on average for all resolutions and
channels, but performs still clearly worse than the version with the
cross-component prediction in most cases. On average, the BD-rate
gain increases due to the cross-component mode by −0.43% for
luma and −0.59% for chroma. On the other hand, using the cross-
component prediction with the C2 architecture leads to an average
of 12.15 times more multiplications than the version without the
additional branch. Thus, again the most complex network clearly
gives the best prediction and resulting BD-rate gains.

4.4. Comparison to Existing Methods
Overall, the BD-rate gains on the Y channel achieved by the ap-
proach presented here are still lower than those presented in [11],

[13] and [12]. On average these methods respectively perform
0.05%, 0.27% and 1.05% better in terms of the Y BD-rate than
IntraNN for classes B, C and D. It can however not be concluded,
if this difference is due to architecture choices and training settings
or simply due to the different training material, as each of these
approaches uses completely different sets. Nonetheless, IntraNN
outperforms those other approaches, that give results for the U and
V channel BD-rates, [11] and [13], by at least 0.05% on the U
and 0.29% on the V channel. This indicates that the dedicated
chroma networks and cross-component integration clearly improve
the prediction quality and the resulting PSNR for these channels.

5. CONCLUSION AND OUTLOOK
It was shown in this paper, that it is useful to train separate intra
prediction networks for the chroma channels, which are able to ben-
efit from the information in the luma component of the respective
block and thus perform a learned cross-component prediction. This
increases the luma BD-rate gains from−1.4% to−2.0% on average
and outperforms state-of-the-art methods regarding the gains on the
chroma channels. Also, the advantages and problems of convolu-
tional network architectures were evaluated with the conclusion that
these are especially useful for complex contexts, small block sizes
and low resolutions. In addition, a new signaling scheme for the
network-based intra prediction mode was proposed and the benefit
of the SATD loss function for training prediction networks was con-
firmed.
However, as this is still a relativly new field of resarch, there are still
numerous possibilities to enhance the current method. Most obvious
is the use of more training material and better data augmentation,
as so far more training samples have always significantly improved
the prediction accuracy. Likewise, the use of references with coding
artifacts during training will most probably increase the prediction
quality especially for low bitrates. Modified masks to allow for par-
tially available reference areas and the use of multiple network-based
predictions similar to [11] or [14] will most likely improve the results
further as well. At the same time it remains to be investigated how
far the needed computational complexity during inference can be re-
duced by quantization, pruning and similar reduction techniques.

1610



6. REFERENCES

[1] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand,
“Overview of the High Efficiency Video Coding (HEVC) stan-
dard,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 12, pp. 1649, 2012.

[2] J. Chen, E. Alshina, G. J. Sullivan, J.-R. Ohm, and J. Boyce,
“Algorithm description of joint exploration test model 7 (JEM
7),” Doc. JVET-A1001-v1, Joint Video Exploration Team of
ITU-T VCEG and ISO/IEC MPEG, July 2017.

[3] G. Van der Auwera, J. Heo, and A. Filippov, “Description of
core experiment 3 (CE3): Intra prediction and mode coding,”
Doc. JVET-J1023-v1, Joint Video Exploration Team of ITU-T
VCEG and ISO/IEC MPEG, Apr. 2018.

[4] J. Li, B. Li, J. Xu, and R. Xiong, “Intra prediction using mul-
tiple reference lines for video coding,” in Data Compression
Conference (DCC), April 2017, pp. 221–230.

[5] G. Van der Auwera, J. Heo, and A. Filippov, “Description of
core experiment 3 (CE3): Intra prediction and mode coding,”
Doc. JVET-L1023-v1, Joint Video Exploration Team of ITU-T
VCEG and ISO/IEC MPEG, Oct. 2018.

[6] K. Zhang, J. Chen, L. Zhang, X. Li, and M. Karczewicz,
“Enhanced cross-component linear model for chroma intra-
prediction in video coding,” IEEE Transactions on Image Pro-
cessing, vol. 27, no. 8, pp. 3983–3997, Aug 2018.

[7] L. Theis and M. Bethge, “Generative image modeling using
spatial LSTMs,” in Advances in Neural Information Process-
ing Systems 28, pp. 1927–1935. Curran Associates, Inc., 2015.

[8] R. A. Yeh, C. Chen, T.-Y. Lim, M. Hasegawa-Johnson, and
M. N. Do, “Semantic image inpainting with perceptual and
contextual losses,” Computing Research Repository (CoRR),
2016.

[9] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu,
“Pixel recurrent neural networks,” Computing Research Repos-
itory (CoRR), 2016.

[10] J. Li, B. Li, J. Xu, and R. Xiong, “Intra prediction using fully
connected network for video coding,” in 2017 IEEE Interna-
tional Conference on Image Processing (ICIP), Sept 2017.

[11] J. Li, B. Li, J. Xu, R. Xiong, and W. Gao, “Fully connected
network-based intra prediction for image coding,” IEEE Trans-
actions on Image Processing, vol. 27, no. 7, pp. 3236–3247,
July 2018.

[12] T. Dumas, A. Roumy, and C. Guillemot, “Context-adaptive
neural network based prediction for image compression,”
2018.

[13] Y. Hu, W. Yang, M. Li, and J. Liu, “Progressive spatial recur-
rent neural network for intra prediction,” Computing Research
Repository (CoRR), 2018.

[14] J. Pfaff, P. Helle, D. Maniry, S. Kaltenstadler, B. Stallenberger,
P. Merkle, M. Siekmann, H. Schwarz, D. Marpe, and T. Wie-
gand, “Intra prediction modes based on neural networks,”
Doc. JVET-J0037-v2, Joint Video Exploration Team of ITU-
T VCEG and ISO/IEC MPEG, Apr. 2018.

[15] P. Helle, T. Hinz, R. Rischke, J. Pfaff, P. Merkle, M. Schäfer,
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