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ABSTRACT

Deep convolutional neural networks (DCNN) have enjoyed
great successes in many signal processing applications be-
cause they can learn complex, non-linear causal relationships
from input to output. In this light, DCNNs are well suited
for the task of sequential prediction of multidimensional sig-
nals, such as images, and have the potential of improving the
performance of traditional linear predictors. In this research
we investigate how far DCNNs can push the envelop in terms
of prediction precision. We propose, in a case study, a two-
stage deep regression DCNN framework for nonlinear pre-
diction of two-dimensional image signals. In the first-stage
regression, the proposed deep prediction network (PredNet)
takes the causal context as input and emits a prediction of
the present pixel. Three PredNets are trained with the re-
gression objectives of minimizing `1, `2 and `∞ norms of
prediction residuals, respectively. The second-stage regres-
sion combines the outputs of the three PredNets to generate
an even more precise and robust prediction. The proposed
deep regression model is applied to lossless predictive image
coding, and it outperforms the state-of-the-art linear predic-
tors by appreciable margin.

Index Terms— Deep regression, nonlinear prediction,
lossless image coding.

1. INTRODUCTION

Sequential prediction of signals plays important roles in
many applications, ranging from economics to image/video
processing. Practically, all existing predictors used in im-
age/video processing and computer vision are linear. This
linearity is not due to the nature of the underlying phys-
ical problems; instead, it is only the result of operational
expediency. Optimal design of linear predictors is computa-
tionally intractable. Linear prediction is effective to decor-
relate stationary Gaussian random process, and is widely
used in predictive coding of multidimensional signals. The
classical linear predictors for image coding can be found
in [1, 2, 3, 4, 5, 6].

Even living with the limitation of linear predictors, there
is another difficulty hindering the optimal design of linear pre-

dictors of image signals; that is, the choice of causal context
for predicting the current pixel. The standard practice is to
use the template that contains the K closest known pixels to
the current pixel. The order K of the prediction model is
fixed throughout the sequential prediction process and cho-
sen empirically. The 2-D prediction context is simply a rect-
angular causal region of size K that is centered at the next
pixel xi. Justifying this design is the assumption that the
correlation between two samples increases as they get closer
to each other in space/time. Although the assumption might
be true for many 1-D signals (e.g., ECG, audio), it does not
hold for multidimensional signals as sample dependencies in
natural signals are anisotropic in general. As such, a signal-
independent prediction context must be suboptimal because it
includes irrelevant past samples and misses relevant ones.

Wu et al. [7] proposed an adaptive, piecewise autoregres-
sive (PAR) prediction model for multidimensional signals. It
uses the correlation instead of Euclidean distance between the
past sample xi−t and the current sample xi to sequentialize
past samples to form spatially nested causal prediction con-
texts for different orders of the PAR model. For each xi, the
order of the PAR model is determined in a criterion of mini-
mum description length (MDL). To estimate the PAR model
parameters for xi, the authors also developed a technique to
choose a causal training set of past samples and the associated
prediction context. The MDL model is optimally designed on
a sample-by-sample basis, and it beats all of its predecessors
by achieving the lowest entropy of prediction residuals up to
now. However, the MDL optimization process proposed in [7]
has a prohibitively high computational complexity, requiring
8 hours to perform sequential prediction of a 512×512 image.

This research is inspired by great successes of deep learn-
ing in various signal processing applications, aiming to use
the new tool to improve the performance of existing predic-
tors for multidimensional signals. Our goal is well within
reach because deep convolutional neural networks can learn
complex, non-linear causal relationships, provided that a large
amount of paired input and output data is available. In addi-
tion to breaking the linearity limit, a DCNN prediction model
also circumvents the difficulty of finding a suitable prediction
context because it can, via the training process with a spar-
sity constraint, discover effective features that contribute to
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accurate prediction.
Operationally, a deep learning based predictor also has

advantage. Although the training of the DCNN prediction
model is computationally expensive, it is only an off-line pro-
cess. At the on-line inference stage, the new method runs
faster than the state-of-the-art method of adaptive MDL pre-
dictor.

In this paper, the technical developments are presented
mostly around 2D image signals. However, the ideas and re-
sults can be easily extended to signals of other dimensions.
We propose a two-stage deep regression DCNN for nonlin-
ear prediction of 2D signals. In the first-stage regression,
the prediction network (PredNet), consisting of a convolu-
tional module and a regression module, is designed to take
the causal context as input and output the prediction of the
current pixel. Three PredNets are trained with the different re-
gression objectives of minimizing `1, `2 and `∞ of prediction
residuals, respectively. In the second-stage regression, called
refinement regression, the different predictions from the three
trained PredNets are fed into a new regression network to
generate a more precise and robust prediction for the current
pixel. To validate the effectiveness of the proposed two-stage
deep regression DCNN, we apply it to lossless image cod-
ing and evaluate the self-entropy of the prediction residuals.
The new deep learning prediction method achieves the lowest
entropy of the prediction residuals, among all predictors that
have been published till present.

2. SEQUENTIAL PREDICTION VIA DEEP
REGRESSION

2.1. Problem Formulation

For an image signal modeled as a 2D Markov field, the se-
quential prediction of the current pixel x is made in a suitable
causal neighborhood, that is:

x̂ = F (C(x)) (1)

where C(x) is a causal context consisting of past pixels that
have effects on x; a simple prediction context of nearest
neighbors is illustrated in Fig 1. In what follows, we inves-
tigate how the predictor F can be realized by a prediction
neural network model (PredNet) of deep learning.

Given a set S of training samples {xi;C(xi)}, the Pred-
Net can be optimized by solving the following minimization
problem:

F = argmin
F

Ex∈S‖F (C(x))− x‖` (2)

where E represents the expectation over the training set S.

2.2. Minimum-entropy prediction

For the training of the DCCN prediction model F , any `-norm
of the prediction residuals can be used in the objective func-

Current 
Pixel Causal Context

Fig. 1. The illustration of the 2-D predictor and the corre-
sponding causal context. One circle represents one pixel in
the image.

tion. Different `-norms can be chosen to serve different de-
sign purposes. In lossless image compression, for instance,
the ultimate goal is to minimize the entropy of the prediction
residuals. Designing minimum entropy predictor, despite its
practical values in data compression, has been hardly studied,
apparently because of the difficulty of the problem. The only
known work is a linear minimum entropy predictor by Wang
and Wu [8], which is computed by convex or quasiconvex
programming. Now with the new tool of DCCNs, we embark
on designing non-linear minimum-entropy predictors, which
has remained to be a hard nut to crack thus far.

For most natural images prediction residuals obey a
Laplacian distribution [9]; hence, minimizing `1-norm is
equivalent to minimizing the entropy of prediction residuals.

For the sake of completeness, besides the `1-norm se-
lected as a proxy for minimizing the entropy, we also design
non-linear DCNN predictors of minimum `2 and `∞ norms.
The three prediction networks (PredNets) trained with the
criteria of minimum `1, `2 and `∞ are called PredNet-`1,
PredNet-`2 and PredNet-`∞, respectively.

2.3. Network Architecture

The proposed PredNet consists of a convolution module and
a regression module. The convolutonal module is designed
to extract features that contribute to the prediction from the
causal context, and the regression module applies the regres-
sion on these extracted features to emit the prediction. As
illustrated in the Fig. 2 and Fig. 3, The convolutional module
contains 16 residual units. Each unit consists of two convolu-
tional layers, respectively followed by a batch-normalization
layer and a LeakyReLU activation layer. For LeakyReLU, the
slope of the leak is set to 0.2. The regression module contains
a flatten layer and a fully-connected regression layer with lin-
ear activation.

2.4. Sparse Regularization

If the image is modeled as a Markov random field, then the in-
put of the PredNet, i.e., the causal prediction context, should
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Fig. 2. The architecture of the deep prediction network (PredNet).

Fig. 3. The detailed configurations of the residual unit.

be sufficiently large to contain all the pixels that influence the
current pixel, but at the same time it may include some ir-
relevant pixels. We rely on the deep regression of DCNN to
discover useful features that contribute to the prediction and
in the process discard the irrelevant pixels. In the principle of
MDL, or to reduce the risk of overfitting, we promote a com-
pact DCNN prediction model by requiring the coefficients of
the regression module to be sparse. By noting that the weights
wr of the regression layer behave like a selection function in
pixel domain, we include a model cost regularization term
R(wr) into the objective function for training the prediction
network F :

F = argmin
F

{
Ex∈S‖F (C(x))− x‖` + λR(wr)

}
(3)

where the scalar λ is a Lagrangian multiplier. Here we adopt
the most common form of sparse regularization in neural net-
works, the `1-norm of neuron weights, namely,

R(wr) = ‖wr‖1 (4)

2.5. Refinement Regression

In the first-stage regression, three deep prediction networks
have been trained for minimizing different norms of predic-
tion residuals. For pixel x, the three predictions optimized

in the different criteria are denoted by x̂`1 , x̂`2 and x̂`∞ , re-
spectively. The goal of the second-stage regression is to train
a refined DCNN prediction model that takes x̂`1 , x̂`2 , x̂`∞
as input and emits an improved prediction x̃. Using another
training set S

′
(different from S to prevent overfitting), the re-

fined regression network F can be trained by minimizing the
following cost function:

F = argmin
F
Ex∈S′‖F(x̂`1 , x̂`2 , x̂`∞)− x‖l (5)

In the interest of lossless image compression, our goal is
to design a DCNN minimum-entropy predictor, thus the `1-
norm of prediction residuals is to be minimized in the training
of the refined regression network PredNet-R.

3. EXPERIMENTS

To validate the effectiveness of the proposed deep prediction
network (PredNet), we compare the prediction residuals on
four measures (`1, `2, `∞ and the self-entropy), with the state-
of-the-art predictor MDL-PAR [7], and the gradient adaptive
prediction (GAP) used in the well-known lossless compres-
sion algorithm CALIC [10]. For training, we collect thou-
sands of 2K-resolution high-quality images from the three
public datasets: DIV2K [11], CLIC [12] and Flickr2K [13],
then randomly extract millions of patches from these images
as the training set. Test images used in our experiments are
from the Kodak lossless image dataset [14].

In order to facilitate the computation, we use `8-norm as
an alternative to the `∞-norm in training PreNet-`∞. The
hyper-parameters used for training the PredNets are listed as
following: size of causal context is 21 × 21; learning rate is
fixed to 10−4; weighting coefficient λ is set to 0.2; the param-
eters of Adam optimizer is β1 = 0.9, β2 = 0.99, ε = 10−8.

The performance comparisons with the state-of-the-art
predictors are listed in Table 1. As illustrated in the table, in
the first-stage regression, the DCNN predictors PredNet-`1,
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(a) Image (b) GAP (c) MDL-PAR (d) PredNet-R

Fig. 4. Residual images for ‘motocross bikes’ from the Kodak image dataset.

(a) Image (b) GAP (c) MDL-PAR (d) PredNet-R

Fig. 5. Residual images for ‘shuttered windows’ from the Kodak image dataset.

Table 1. Performance comparisons with the state-of-the-
art predictors. Blue numbers indicate the best performances
achieved in the first-stage regression; Red numbers indicate
the best performances after the second-stage regression.

Predictors
Measures

`1 `2 `∞ entropy ρmax

GAP 5.68 10.36 188.25 4.69 0.27

MDL-PAR 5.34 9.65 181 4.40 0.24

PredNet-`1 4.51 9.40 241.29 4.32 0.20

PredNet-`2 4.62 8.32 228.20 4.38 0.21

PredNet-`∞ 5.65 8.50 160.29 4.58 0.24

PredNet-R 4.48 8.82 230.12 4.25 0.18

PredNet-`2 and PredNet-`∞ outperform the state-of-the-
art predictor MDL-PAR in their respective error criterion.
PredNet-`1 not only has the smallest `1-norm, it also has
the lowest entropy of the prediction residuals. This result
indicates that the prediction residuals indeed obey the Lapla-
cian distribution, hence minimizing `1-norm is equivalent to
minimizing the entropy of prediction residuals.

In the refinement regression, the DCNN predictor PredNet-
R further reduces the `1 error and the entropy of the predic-
tion residual, by combining the different predictions in the
first-stage regression. PredNet-R exhibits the power and
advantages of deep learning in multidimensional signal pre-
diction over traditional methods by breaking the record of

achievable lowest entropy held by the MDL-PAR predictor.
This achievement is remarkable considering the extremely
high complexity of the MDL-PAR predictor that needs to
solve one optimization problem per pixel. As a result, it re-
quires hours to preform sequential prediction of a 512×512
image. In contrast, the proposed deep learning predictors are
designed off line, and they run much faster than the MDL-
PAR predictor at the time of inference, taking 30 seconds per
512×512 image.

In addition to the entropy, the performance of an image
predictor can be measured by lack of correlation between the
prediction residual and the original image signal. We compute
the local maximum correlations (denoted by ρmax) between
the prediction residuals and the input image for the predictors
in the comparison group, and include the results in Table 1.
The local maximum correlation refers to the largest of the cor-
relation coefficients between the corresponding patches ex-
tracted from the prediction residuals and the original image.

The superiority of PredNet-R can be visualized by the ab-
sence of image structures in the residual image. Figs. 4 and 5
are sample residual images of GAP, MDL-PAR and PredNet-
R. It is evident that the residual images of PredNet-R contain
the least amount of visible signal structures.

4. CONCLUSIONS

In this work, DCNNs establish new performance records in
sequential prediction of image signals. The proposed deep
learning signal prediction models may find applications in
signal compression, denoising and analysis.
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