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ABSTRACT
Passive radio sensing technique is a well established research
topic where radio-frequency (RF) devices are used as real-
time virtual probes that are able to detect the presence and
the movement(s) of one or more (non instrumented) subjects.
However, radio sensing methods usually employ frequencies
in the unlicensed 2.4−5.0 GHz bands where multipath effects
strongly limit their accuracy, thus reducing their wide accep-
tance. On the contrary, sub-terahertz (sub-THz) radiation, due
to its very short wavelength and reduced multipath effects, is
well suited for high-resolution body occupancy detection and
vision applications. In this paper, for the first time, we adopt
radio devices emitting in the 100 GHz band to process an im-
age of the environment for body motion discrimination inside
a workspace area. Movement detection is based on the real-
time analysis of body-induced signatures that are estimated
from sub-THz measurements and then processed by specific
neural network-based classifiers. Experimental trials are em-
ployed to validate the proposed methods and compare their
performances with application to industrial safety monitoring.

Index Terms— Terahertz communication, passive activ-
ity recognition, human-robot collaboration, machine learning,
feed-forward networks, long short-term memory networks
(LSTM).

1. INTRODUCTION

Terahertz (THz) band communications [1] lie in the fre-
quency gap between 0.1 THz and 10 THz and it is envisioned
to satisfy the increasing demand for high speed wireless
communication in the very short range (1 − 10 m). Re-
cent technological innovation in designing sensors, detectors
and antennas in the THz band, enables available research
results to be widely applied in more scenarios, especially
automotive and industrial applications [2]. In particular, the
sub-THz band, from 0.1 THz up to 1 THz, is expected as a
promising option to be utilized for communication due to a
tractable level of signal attenuation. In addition, a consider-
able amount of work has been done in various applications
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due to this frequency range [3], and special-purpose devices
have been demonstrated for imaging [4] as well as sensing [5]
and biology [6]. Compared to the microwave radiation in the
1 − 50 GHz band, the sub-THz frequency range achieves a
fairly good spatial resolution required for precise imaging [4].
The diffusion of sub-THz radios for next generation of per-
sonal communication and IoT devices [7] is expected to pave
the way towards novel dense communication, sensing and
computing paradigms, able to provide new functionalities by
leveraging existing hardware devices, networks, and build-
ing infrastructures. Transforming deployed sub-THz-enabled
systems into sensing infrastructures might become a promis-
ing opportunity to develop high precision human-scale vision
applications. Radio vision systems [8] for the recognition
of human body movements generally exploit measurements
of the stray radiation emitted by unmodified radio-frequency
(RF) devices to recover a rough 2D/3D image of the environ-
ment. Most of the existing systems leverage 2.4 GHz and 5.0
GHz ISM bands, and generally cm-scale wavelengths [8, 9].
However, RF sensing techniques in such bands have shown
to have the limitations of rich signal multi-path [10], low
accuracy [11], complex signal processing methods [12] and
necessity to maintain a controlled environment [13]. The
adoption of sub-THz bands, and, generally, mm-scale wave-
lengths (mmW), is expected to provide reduced multi-path
effects. This kind of scenarios, characterized by a more
tractable measurement setup and a simpler analysis of reflec-
tions, in turns increases the accuracy of tracking and activity
monitoring at the cost of a reduced coverage area. Finally,
diffusion of consumer-grade devices for 5G and automotive
applications will provide the wide adoption of passive RF
techniques for the sub-THz and mmW bands.

2. LITERATURE REVIEW

Several models have been proposed to describe body-induced
multipath radio propagation [14] up to 100 GHz band, while
body effects in the sub-THz band are still rather unexplored
with only a few available works [15]. The development of
sources and detectors for the high-frequency range has been
driven by applications such as spectroscopy, imaging and im-
pulse ranging [16]. However, with sensing applications and
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Fig. 1. HRC setup in the experimental test plant: emitter and
receiver are 2 m apart; the operator is inside the shared area
implementing some activities.

short-range communications possible in the 1 − 10 m range,
the technology and applications for sub-THz waves are grow-
ing rapidly. In [17] authors investigated the mmW band, spe-
cially 60 GHz for localization task. The results demonstrate
a strong potential for mmW as a localization service with
decimeter level accuracy and high availability. In [18], au-
thors proposed the use of 60 GHz radios for human mobil-
ity tracking and activity monitoring. The properties of the
sub-THz radiation make people screening solutions extremely
valuable for many industrial applications where human safety
is critical. In line with the next generation of smart manufac-
turing systems (i.e., Industry 4.0), in this paper, we exploit the
sub-THz radio technology to implement a virtual safety fence
with the goal of isolating a human worker from robots that are
cooperating in implementing HRC (Human-Robot Collabora-
tion) tasks [19]. In particular, we explore the problem of seg-
mentation, processing and classification of signal sequences
measured from the stray sub-THz radiations emitted for the
detection and discrimination of body movements inside an
indoor industrial HRC test plant. As depicted in Fig. 1, the
sub-THz electromagnetic (EM) radiation is collected using a
sub-THz camera consisting in a 2D array of K detectors. We
address here the sensitivity of the system under different en-
vironmental conditions, and the accuracy for the discrimina-
tion of safe vs. unsafe body movements inside a HRC shared
space [19]. Discrimination of human activities is based on
machine learning tools, while a comparative analysis of dif-
ferent techniques for performance assessment is provided and
results are discussed.

3. PROBLEM STATEMENT

This section focuses on the statistical model adopted for the
selection of the features obtained from stray sub-THz radia-

tion measurements that can be processed for body detection
and activity discrimination. This model is verified by exper-
iments in Sect. 4. The proposed virtual safety fence system
consists of a sub-THz source and a sub-THz receiver that
is composed by a 2D array of K single detectors, namely
a sub-THz camera available in the laboratory. Let it,k be
a measure of the intensity, or strength, of the radiated sub-
THz field observed, at time t, by the k-th detector (with k ∈
[1, ...,K]) that composes the camera. The intensity is propor-
tional to the electric field power of the received electromag-
netic waves normalized to the [0 − 1] value range. The sam-
pling interval4t is chosen according to some criteria detailed
in Sect. 4. Vector It := {it,k}Kk=1 collects the measurements
of the sub-THz radiation for all K detectors expressed in dB-
scale. The virtual safety fence is programmed to detect up to
j = 1, ...,M worker activities in the surroundings of the line-
of-sight (LOS) path connecting the sub-THz source and cam-
era, since body activities leave a characteristic footprint on
the received radiation. A safety controller continuously mon-
itors the collaborative task and use the output of the detection
system to replan, stop or resume the robot activity, depending
on the specific actions taken by the human worker. In gen-
eral, the multi-ray propagation between the fixed source and
receiver consists of line-of-sight (LOS), reflected, scattered
and diffracted rays [20]. When no obstacles are present near
the LOS path and the sub-THz setup is directional (e.g., using
dielectric lenses as in the experimental setup of Sect. 4), the
propagation is mostly due to the main LOS ray that depends
only on the free-space loss and the absorption loss. Therefore,
the radiation intensity is modeled as

It = st(j) +wt, (1)

where st(j) := {st,k(j)}Kk=1 corresponds to the body-
induced signature corresponding to the j-th activity while
the Gaussian noise wt ∼ N (b,C) models the background
radiation (i.e., observed in the empty environment, namely
with the worker outside the detection area) including the
measurement noise due to the sub-THz camera. Considering
that environmental changes (i.e., due to concurrently robot
movements) might alter the LOS propagation of the sub-THz
signal, the average component b := {bk}Kk=1 is a function
of LOS terms: absorption and free-space loss. The absorp-
tion loss accounts for the attenuation that a propagating wave
suffers because of molecular absorption and depends on the
concentration of molecules encountered along the path [20].
This is considered a constant at the given center frequency
(here equal to 100 GHz) and constant temperature. The
free-space loss accounts for the attenuation due to the wave
propagation through the medium. Reflection, scattering and
diffraction effects due to a worker or an obstacle (e.g., robot)
near the LOS path (i.e., approaching/crossing the virtual
fence) introduce time-varying changes in (1). The covariance
C includes such environmental changes in addition to those
due to the measurement noise sources.
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3.1. Change detection and segmentation

Discrimination of body activities is based on the analysis of
the sequences ItA,T = [ItA , ItA+1..., ItA+T ] of T samples.
We define at first a change detection algorithm to segment
anomalous fragments of data in real-time. It is used to detect
the optimal change point, or beginning tA of the segment,
considering all K detectors. Then, in Sect. 3.2, we analyze
some features that can be extracted from sequences in order to
apply machine learning tools for classification of body move-
ments. Considering a typical time-varying indoor environ-
ment, we model the fluctuations of the detected radiation it,k
by a linear first order auto-regressive (AR-1) model

it,k(θk) = ak × it−1,k + rk + nt,k, (2)

with parameters θk = [ak, σk, rk], namely the AR parameter
ak, the static component rk = (1 − ak)bk and the residual
nt,k ∼ N ( 0, σ2

k) with deviation σ2
k = E

[
(it,k − bk)2

]
×(

1− a2k
)
. The detection problem is implemented iteratively

by exploiting the cumulative sum (CUSUM) paradigm [21].
Assuming an inspection interval T (see also Sect. 4), the
CUSUM gt is designed to identify the intensity fluctuations

gt =
1

T

K∑
k=1

1

σk

t+T∑
j=t

(
n2j,k
σ2
k

− 1

)+

(3)

with (·)+ = max[0, ·] and nt,k = it,k − ak × it−1,k − rk.
According to the detection threshold h0 (obtained during the
training stage), the beginning tA of the anomalous sequence
(i.e., the change point) is estimated in real-time as

tA = min {t : gt ≥ h0}. (4)

3.2. Feature extraction and machine learning tools

Detection of worker activities is herein based on the real-time
analysis of body-induced signatures st that are estimated from
measurements It through background subtraction as

ŝt = C−
1
2 (It − b). (5)

Discrimination of activity (to classify its safety relevance) is
based on the real-time analysis of the sequence

StA,T = [ŝtA , ŝtA+1..., ŝtA+T ] (6)

over the segmented interval [tA, tA + T ]. For compara-
tive evaluation, we examined the Maximum Likelihood Es-
timation (MLE) [22] approach against two artificial neural
networks (ANN), namely the Feed-Forward neural network
(FF-NN) and the Long Short-Term Memory (LSTM) network
[23]. MLE takes as features the mean and standard devia-
tion of signatures StA,T obtained during the training phase.
Based on (5), signature ŝt observed at time t is assumed to

be conditionally independent given the j-th activity near the
virtual fence. The measurement ŝt = ŝt(j) conditioned to
activity j is thus assumed to be an uncorrelated Gaussian vec-
tor with mean hS(j) = [h1(j), ..., hK(j)]

T and covariance
CS (j) = diag

(
σ2
1(j), ..., σ

2
K(j)

)
. Conditional likelihood is

p(ŝt|j) =
1√

(2π)K |CS(j)|
exp

{
−1

2
‖ŝt − hS(j)‖2C−1

S (j)

}
(7)

where ‖s‖2C = sTC s denotes the square norm of the vec-
tor s weighted by the matrix C. Snapshot MLE of activity
ĵ, based on the segmented sequence StA,T , can be obtained
by maximizing ĵt = argmaxj∈[1,...,M ]p(ŝt|j) while the final
decision about safe/unsafe activity within the considered in-
terval T is based on major voting. Both neural network mod-
els take the segmented sequences (6) of length T as inputs for
classification. FF input layer is followed by a single hidden
layer with 10 neurons, a softmax layer and an output classi-
fication layer with M = 3 classes (see Sect. 4 for details),
for discriminating 3 different activities. LSTM architecture is
specifically designed to model temporal sequences and, un-
like hidden Markov models, includes long-range dependen-
cies. LSTM architectures have been explored for large-scale
acoustic modeling in speech recognition, language transla-
tion, and handwriting recognition [24]. The methodology is
here used to track long- and short-term dependencies on the
segmented sequences. For both FF-NN and LSTM, 80% of
data is used for training the network, 10% for validation and
10% for testing the classifiers. Results and comparative anal-
ysis are summarized in Sect. 4.

4. PRELIMINARY VALIDATION

For the implementation of the safety fence, we adopted a sub-
THz source (about 100 mW at 100 GHz) that uses an IMPATT
diode (impact ionization avalanche transit-time diode) tech-
nology [25] and a sub-THz camera consisting of K = 1024
pixel detectors arranged over a 2D array (32× 32). The cam-
era, developed by Terasense, has a room-temperature respon-
sivity up to 50 kV/W (with pixel-to-pixel deviation respon-
sivity within a 20% range) [26], a noise-equivalent power of
1 nW/

√
Hz in the frequency range 0.01 − 1 THz and an ac-

quisition rate up to 50 fps (frames per second). As shown in
Fig. 1, the experimental activity has been conducted inside a
test plant over an indoor area of about 6 × 4 square meters
size. The sub-THz source and camera are placed 2 m apart.
A worker stands inside the monitored area and performs non
rigid body motions (i.e., working activities) in close proxim-
ity with a robotic arm. In what follows, the MLE, FF-NN and
LSTM approaches are compared. The virtual fence system is
designed to discriminate between 3 activities, namely: a) a
worker moving towards the unsafe space occupied by robotic
arms, and crossing the virtual fence (j = 1); b) a worker
traversing the virtual fence with both arms thus making un-
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Fig. 2. Body-induced time-domain signatures after back-
ground removal vs. time for a worker (from the left): a) cross-
ing the virtual fence (unsafe); b) moving both arms (unsafe);
c) performing safe movements behind the virtual fence.

safe movements while keeping the torso/body inside the the
safe area (j = 2); c) a worker performing safe activities (ran-
dom movements) behind the virtual fence (safe movements,
j = 3). Fig. 2 shows some examples of the segmented time-
domain signatures. They consist of T = 10 samples (200
ms) for all three cases; the change point detection adopts a
threshold of h0 = 0.1. In the same figure, we represent the
time series considering 2 detectors from the 2D array, namely
corresponding to the superimposed image pixels (21,21) and
(25,25), respectively. Notice that detectors in the surrounding
of pixel (16,16) mostly capture the LOS radiation field, while
pixels located in the external sides of the image are more
sensitive to obstructions in the surrounding of the LOS path
(Obstructed LOS - OLOS). Both sub-THz source and camera
mount PTFE (PolyTetraFluoroEthylene) lenses. According
to this setup, the time-domain signatures after background re-
moval abruptly change when the worker is entering the unsafe
zone (i.e., about 30 dB of attenuation); a similar change, al-
though characterized by a distinctive time-domain footprint
and a smaller attenuation, is observed when the worker is per-
forming unsafe arms movements. Safe movements behind the
fence cause small attenuations (up to 5 dB) that are caused
by OLOS propagation. These small alterations correspond to
human torso approaching and partially obstructing the LOS
path. Fig. 3 shows examples of cross-sectional time slices
of the radiation field, after background subtraction, from all
K detectors and for all activities. Fig. 4 shows performances
of the classifier using MLE, FF and LSTM methods. While
the MLE approach provides low accuracy for the discrimina-
tion of arms movements, FF and LSTM provide an accuracy
higher than 95% for all activities. Fig. 4 also compares per-
formance figures considering different pixel subsets of the 2D
camera where only detectors corresponding to the zones out-
side the hatched areas are used for activity recognition. As
shown in Fig. 4.c, removing the detector elements whose po-
sitions is in the center of the field of view and pixels at corners
improves the accuracy and the computational time as well.

Fig. 3. Intensity images obtained after background removal
for the 3 monitored activities involving a worker (from the
left): a) crossing the virtual fence; b) moving both arms; c)
performing safe movements behind the virtual fence.

Fig. 4. Accuracy evaluation using MLE, FF-NN and LSTM
networks (right) to discriminate the same activities detailed in
Fig. 2 and 3. We considered (left, from the top): a) all pixels
of the camera; b) only the pixels located in the central area;
and c) only the pixels outside the highlighted areas.

5. CONCLUSIONS

In this paper, we propose a novel approach using sub-THz
radiation for passive human sensing and particularly body
movement discrimination. To reduce the complexity of train-
ing phase we also use sensing task in unsupervised mode us-
ing machine learning tools. Experimental validation is con-
ducted using sub-THz sensor to discriminate different activi-
ties. Accuracy results show that the sub-THz technology and
NN tools are well suited for human activity detection.
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