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Abstract—Cluster structured compressive sensing is a new
direction of compressive sensing, dealing with cluster structured
sparse signals. In this paper, we propose a sensing matrix based
on Kasami codes for CSS signals. The Kasami codes have been
the subject of several constructions. Our idea is to make these
constructions suitable to CSS signals. The proposed matrix,
gives more intention to the clusters. Simulation results show the
superior performance of our matrix. In that, it gives the highest
rate of exact recovery. Moreover, the deterministic aspect of our
matrix makes it more suitable to be implemented on hardware.

Index Terms—Compressive sensing, Cluster structured com-
pressive sensing, Sensing matrix, Orthogonality property.

I. INTRODUCTION

Compressive sensing (CS) [1] is a new sampling framework
dealing with sparse signals. As a sensing step, CS captures a
low-dimensional measurement vector by correlating the sparse
signal with a sensing matrix. In the literature, the sensing
matrices used in CS can be divided into two categories,
random and deterministic. The Gaussian [2] and Bernoulli [3]
are the most familiar random matrices; the random aspect of
such a matrix makes it very difficult in terms of hardware
implementation. As an alternative, deterministic matrices are
very easy to be implemented on hardware. At the recovery
step, given that the dimension of the measurement vector is far
less than the dimension of the original signal, so the problem
of recovery (i.e. recover the original signal from its corre-
sponding measurement vector) is an underdetermined problem
which is impossible to solve. Fortunately, using the sparsity,
CS provides several algorithms to recover the original sparse
signal. For example, orthogonal matching pursuit (OMP) [4]
and l1-magic [5] are the most popular algorithms.

Cluster structured compressive sensing (CSCS) is a new
direction of CS, dealing with cluster structured sparse (CSS)
signals. The existing algorithms dealing with CSS signals can
be categorized into three categories: Block greedy algorithms
[6,7]; this category requires prior knowledge of the location
and the size of every cluster, which is not always practical.
Fortunately, dynamic programming algorithms [8] require only
the number of clusters. Finally, blind recovery algorithms [9-
12] do not require any prior knowledge. One can realize that
blind recovery algorithms are the most interesting algorithms.
But their drawback is that they are computationally demand-
ing. Differently from the existing works, we try to open a

new research direction by proposing efficient sensing matrices
for CSS signals. Our first work has been published in [13],
where a matrix has been proposed for CSS signals. In this
paper, similar to the previous work, we propose a new sensing
matrix based on Kasami codes for CSS signals. Our idea
is to choose some good Kasami codes as columns of the
proposed matrix. Moreover, we give more importance to the
columns corresponding to the clusters. In terms of the required
parameters, our method requires only the approximate location
of each cluster. Note that, at the recovery step, we use only
a basic CS algorithm in order to keep the same basic CS
complexity. So we improve the quality without increasing the
complexity. Extensive experiments and comparisons with the
best state-of-the-art sensing matrices show that our matrix is
very powerful in the case of CSS signals.

The remainder of this paper is organized as follows: In
section II, we give a summary of CS and the derivation CSCS.
In section III, we give a detailed description of the proposed
matrix. Simulation results are given in section IV. We conclude
the paper in section V.

II. CS THEORY

CS is a new framework representing a good solution
for sensing and recovery of sparse signals. A signal, is
said sparse, if it has a concise representation either in its
original domain or in a transform domain Ψ (i.e. x=Ψα).
Then we can define the set 4S of S-sparse signals as:
4S={x∈RN ,‖x‖l0≤S or ‖α‖l0≤S}, where ‖b‖l0 is the
pseudo-norm l0, which gives the number of non-zero coeffi-
cients in b. For more clarity, let’s consider an N -dimensional
S-sparse signal x. CS proposes to acquire this signal by cor-
relating it with an M×N sensing matrix Φ, with S<M�N :

y = Φx. (1)

It has been proven that, by exploiting the sparsity of x, the
problem of inverting (1) (i.e. given y and Φ, recover the signal
x) is possible provided that the sensing matrix Φ verifies some
properties. One of the most popular properties is the restricted
isometry property (RIP) defined in the literature as:
Definition 1 (RIP): for each sparsity level S=1,2,3,..., we
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define the constant δS of a given matrix Φ as the smallest
number that verifies:

(1− δS)‖x‖2l2 ≤ ‖Φx‖
2
l2 ≤ (1 + δS)‖x‖2l2 , (2)

for all S-sparse signals x. We say that Φ verifies the RIP of
order S if: 0<δS�1. Note that there are other properties (e.g.
mutual coherence property, ...) that can be used instead of RIP.

Considering that the signal of interest x is sparse in
its original domain, the CS formulation for the problem of
recovering a S-sparse N -dimensional signal from M linear
measurements y is the following:

x̂ = arg min F (x) s.t y = Φx, (3)

where F (x) is a sparsity inducing function which allows to
select, among the infinitely many solutions the desired one.
Provided that the desired solution is known a priori to be
sparse, so the most ultimate choice for F (x) is F (x)=‖x‖l0 .
Then this choice leads to the P0 optimization problem:

(P0) x̂ = arg min ‖ x ‖l0 s.t y = Φx, (4)

the problem P0 is known to be numerically prohibitive.
Another choice for F (x) is F (x)=‖x‖l1 , where ‖x‖l1 is the
norm l1 of x, that gives the sum of the absolute values of
coefficients in x. This problem is called P1 problem:

(P1) x̂ = arg min ‖ x ‖l1 s.t y = Φx. (5)

In the case of noisy measurements, y=Φx+e, where e is a
noise term with ‖e‖l2≤ε, P1 is reformulated as:

(P2) x̂ = arg min ‖ x ‖l1 s.t ‖ y −Φx ‖l2≤ ε, (6)

also an unconstrained optimization problem P3 is considered:

(P3) x̂ = arg min(
1

2
‖ y −Φx ‖l2 +λ ‖ x ‖l1 ), (7)

with ‖.‖l2 is the euclidean norm and λ is a predefined constant.
It is worth noting that if the signal is S-sparse in an

appropriate transform domain Ψ (i.e. x=Ψα). In this case,
we acquire the signal as in (1). But in the recovery step, we
search for α. For that, the problem P0 is reformulated as:

(P0) α̂ = arg min ‖ α ‖l0 s.t y = ΦΨα, (8)

the same thing for problems P1, P2 and P3.
While CS provides a significant improvement in the case of

sparse signals, CSCS is a new direction dealing with CSS sig-
nals. CSCS makes use of suitable sparsity inducing functions
F (x) that induce the sparsity of the solution with favoring
certain configurations of the support of non-zero coefficients
and discourages others. Several works have been devoted to
integrating the clustered structure into CS. All the CSCS
algorithms have proposed a good solution for CSS signals,
but have a one drawback is that they are computationally
demanding. This is why we are interested to change the way
of acting and focus on the sensing step rather than focusing on
the recovery step; in other words, our idea is to propose new
appropriate sensing matrices for efficient CSS signals sensing.
In [13], we have proposed a new matrix suitable to acquire

CSS signals using Hadamard codes; based on same idea, we
propose in the following section a new sensing matrix based
on Kasami codes.

III. PROPOSED SENSING MATRIX

A. Large set of Kasami codes

The large set of Kasami codes [14] contains Nc=2
n
2 (2n+1)

codes each of length Mc=2n−1 as illustrated in TABLE I,
where u is an m-sequence of length Mc generated by a

TABLE I: Large set of Kasami codes

u
v

u⊕Tkv k = 0, ..., 2n − 2

u⊕Tmw m = 0, ..., 2
n
2 − 2

v⊕Tmw m = 0, ..., 2
n
2 − 2

u⊕Tkv⊕Tmw k = 0, ..., 2n − 2 and m = 0, ..., 2
n
2 − 2

primitive polynomial of degree n (i.e. n must be even and
mod(n, 4)=2), v is a sequence formed by decimating the
sequence u by 2

n
2 +1+1, and w is the sequence obtained by

decimating u by 2
n
2 +1. T denotes the cyclical left shift oper-

ator and ⊕ denotes the modulo-2 operator. In the sequel, we
represent the binary codes using +1’s and -1’s; the appropriate
mapping is that the zeros are mapped to +1’s and the ones are
mapped to -1’s. Before presenting our sensing matrix, called
block near orthogonal (BNO) Kasami matrix, we describe the
construction of an intermediate matrix called near orthogonal
(NO) Kasami matrix.

B. Near orthogonal Kasami matrix

The sensing matrix with columns chosen at random from
the large set of Kasami codes is called hereafter, Random
Kasami matrix. NO Kasami matrix is based on the idea of
selecting the codes that have good orthogonality rather than
choosing them randomly. This selective technique is called
hereafter, pruning technique. Moreover, we further improve
the orthogonality of these codes by using an extra technique
called padding technique.

1) pruning technique: The pruning technique consists of
choosing, from the large set of Kasami codes, some specific
codes, which have a good orthogonality. To simplify the
problem, let’s view the large set of Kasami codes as an
Mc×Nc matrix, where each column represents a Kasami code
from the large set. The purpose is to construct an Mc×N
matrix; consequently, the conventional method is randomly
eliminating Ne=Nc-N codes. NO Kasami matrix propose to
eliminate Ne codes in a way to improve the orthogonality.
The inner-product between the different codes takes values in
{−t(n),−s(n),-1,s(n)-2,t(n)-2}, where −t(n)=-2×s(n)+1=-
(1+2

n+2
2 ). The idea is to eliminate the codes that give the

maximum value −t(n). The idea is illustrated in Fig. 1.
2) padding technique: One can notice that many inner-

product values of Kasami codes are −1. So by padding +1 to
the Kasami codes, it is possible to make these inner-product
values to 0. This technique will more enhance the columns
orthogonality.

1593



Fig. 1: First: we extend (code 1) by calculating its inner-
product with codes of indices from 2 to Nc, and then eliminate
the codes that give the maximum value −t(n). Second: we
cross the tree from left to right, by taking the first no
eliminated code (code i) and calculate its inner-product with
codes of indices from i+1 to Nc without considering the codes
that have been already eliminated. And then eliminate the
codes that give maximum inner-product. Third: similarly the
(code j) is extended and the process is repeated until we reach
the desired number of eliminated codes Ne.

3) combining the pruning and padding techniques: Here
we combine the two previous mentioned techniques to con-
struct an (Mc+1)×N sensing matrix. First, we apply the
pruning technique to an Mc×Nc matrix to construct an
Mc×N matrix. Second, we add +1 to each column to form
an (Mc+1)×N sensing matrix.

C. Block near orthogonal Kasami matrix

NO Kasami matrix has been the subject of another paper
[15], where we have demonstrated its power in the case of
sparse signals. In this paper, we extend this matrix to make
it suitable to CSS signals. The construction of the proposed
matrix, called BNO Kasami matrix, gives more importance to
the columns corresponding to the clusters during the sensing
step. All along the construction of the NO Kasami matrix (i.e.
Fig. 1), we consider the set containing the codes from code
1 to the last extended code. The inner-product between the
elements of this set take values in {-s(n),-1,s(n)-2,t(n)-2}.
So we conclude that these codes have a good orthogonality
compared to the rest that take values in {-t(n),-s(n),-1,s(n)-
2,t(n)-2} which includes the maximum value −t(n). These
codes are always located at the beginning of the NO Kasami
matrix, and their number Nex is related to Ne. Using a NO
Kasami matrix ΦM×N , and a G-length set L of clusters
locations (G is the number of clusters in the signal), we
construct our new matrix by following the next steps: 1) form
a set that contains NO Kasami matrix columns of indices
ranging from 1 to Nex. 2) divide this set into G blocks; all the
G blocks must have the same number of columns as possible.

3) form a new M×N sensing matrix by putting the G blocks
in such a way that the location of ith block into the matrix
is given by the location pi of ith cluster into the signal, and
fulfill the matrix by NO Kasami matrix columns ranging from
Nex+1 to N .

1) general sensing case: Finally, we note that in order
to take benefit from the columns structure, the proposed
sensing matrix must be correlated directly with the sparse
representation α instead of x (i.e. in the case of sparsity in a
transform domain). For that, we have to multiply our sensing
matrix by Ψ−1. To be clear, let’s consider a BNO Kasami
matrix Φ and a signal x that has a sparse representation α in
a transform domain Ψ (i.e. x=Ψα). For that we acquire the
signal x by the the matrix Φ′=ΦΨ−1 as follows:

y = Φ′x = ΦΨ−1Ψα = Φα. (9)

An important thing to note, is that Ψ is often an orthonormal
matrix; the fact that reduces the complexity of its inversion
since Ψ−1=Ψt, where t in the transpose operator.

IV. SIMULATION RESULTS

In this section, we compare the proposed matrix with
Random Kasami matrix, NO Kasami matrix, bBH matrix,
Bernoulli matrix (its entries take values + 1√

M
or − 1√

M
with equal probability), and Gaussian matrix (its entries have
zero mean and variance equal to 1

M ). Also the Kasami
matrices are normalized after construction (i.e. multiplied
by 1√

M
). Comparison is given in terms of the rate of

the exact recovery (RER), which is defined with consid-
ering that the recovery is exact if the signal to noise ra-
tio (SNR) is greater than 50 dB. The SNR is defined as:
SNR=20 log10

‖x‖l2
‖x−x̂‖l2

, where x is the original signal and x̂
is the approximate signal. Over all simulations, we fix the
number of clusters as G=8. Each cluster has a random size.
The clusters locations are fixed as L={L1=15,L2=30,L3=45,
L4=60,L5=75,L6=90,L7=105,L8=116}. Three type of signals
are considered, Gaussian signals (whose non-zero coefficients
are drawn from a Gaussian distribution, zero mean and vari-
ance equal to 1), uniform signals (whose non-zero coefficients
take values +1 or −1 with equal probability).

A. Sparsity in the original domain

In this case, x is itself CSS, y is formed as in (1). At the
recovery step, OMP utilizes y and Φ to recover x̂. As results,
the proposed matrix gives good results with Gaussian CSS
signals and uniform CSS signals (Fig. 2).

B. Sparsity in a transform domain

Here, we consider that the signal x is sparse in the discrete
cosine transform (DCT) domain. For that, we form α as a
CSS vector with S non-zero entries drawn from a Gaussian
distribution, and then form the signal x (i.e. x=Ψα, where Ψ
is the IDCT matrix). We form y as in (9) for the BNO Kasami,
NO Kasami and bBH matrices, and as in (1) for the other
matrices. At the recovery step, OMP utilizes y and A=Φ′Ψ
to recover α̂, and then x̂=Ψα̂. From Fig. 3 one can see the
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Fig. 2: N=128, M=64, G=8: Gaussian signals (top), Uniform
signals (bottom).
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Fig. 3: N=128, M=64, G=8: Gaussian signals.

superior performance of our matrix compared with the other
matrices.

C. Practical application

We consider 252×252 natural images each is divided
to blocks of size 9×9 and consider the signal x as a
vector 81×1 obtained by stacking the columns of a 9×9
image pixels block; x is CSS in DCT domain (i.e. x=Ψα
where Ψ is the IDCT transform matrix and α is the DCT
coefficients vector of x). This cluster structured sparsity is
illustrated in Fig. 4. Moreover, the clusters locations are
similar for the different blocks, the fact that makes their prior
knowledge possible. So, the clusters locations are chosen as
L={L1=1, L2=19, L3=37, L4=54, L5=73}. We construct
a 64×81 NO Kasami matrix (Nex=18) and then reorder
its columns to form the BNO Kasami one. This columns
reorder is based on the clusters locations; for that the columns
of indices ranging from 1 to 18 are moved to the indices
[1,2,3,4]∪[17,18,19,20]∪[35,36,37,38]∪[53,54,55]∪[72,73,74]
and we fulfill the rest of BNO matrix by the NO matrix

Fig. 4: Cluster structured sparsity of the DCT coefficients of
natural images.

TABLE II: SNR in dB with N=81, M=64.

Cameraman Barbara Rice Lena
BNO Kasami 23.0703 26.2793 23.0350 25.8999
NO Kasami 22.1762 25.8427 22.1387 24.9411

Random Kasami 19.5143 22.4309 19.6928 22.6385
bBH 21.8584 25.8215 22.2394 25.2518

Bernoulli 20.3862 23.4640 20.4783 23.4547
Gaussian 20.3569 23.4504 20.4586 23.4056

columns of indices ranging from 19 to 81. We form a 64×1
vector y as in (9) for the BNO Kasami, NO Kasami and
bBH matrices, and as in (1) for the other matrices. At the
recovery step, OMP algorithm is used to calculate α̂. Then
we form the approximate signal as x̂=Ψα̂ and reshape it to
form again the image block. Finally we calculate the SNR
over the whole image. TABLE II, shows that the proposed
matrix outperforms the other matrices. Also Fig. 5 gives a
comparative illustration to show the power of our matrix.

Fig. 5: N=81, M=64: BNO Kasami (left), Random Kasami
(right).

V. CONCLUSION

Unlike the state-of-art works dealing with CSS signals that
focus on the recovery step, in this paper, we focus on the
sensing step by proposing a new Kasami sensing matrix for
CSS signals. The proposed matrix is based on the idea of
enhancing the columns orthogonality. Simulation results show
that this new matrix outperforms all the popular matrices in
the case of CSS signals. Moreover, its deterministic aspect
makes it more suitable to be implemented on hardware.
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