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ABSTRACT

Approximate computing has drawn considerable attention to both

academia and industry in the area of DNN hardware. Despite sub-

stantial efforts to design approximate circuits and building blocks, the

resilience of DNN layers and structures remains an untapped field to

explore. This paper presents an efficient framework to evaluate DNN

resilience with fine-grained approximate operations, such as multipli-

ers, adders and low-bit operators. The framework can execute large-

scale approximate DNNs with relatively less time overhead. Massive

experiments are conducted with the proposed framework to reveal

the relationship between network structures and error tolerance. Ad-

ditionally, a case study of fine-tuning the approximate DNN is pre-

sented.

Index Terms— Approximate Computing, Neural Networks,

Low-power Design, Optimization Framework

1. INTRODUCTION

Nowadays, DNNs (Deep Neural Networks) have been extensively

explored and deployed in various computing devices. From edges

to clouds, performance and energy efficiency of DNN inference are

two critical factors which have been studied and optimized in sub-

stantial works. A new trend in this field is to excavate the inherent

fault resilience of DNNs. Combined with the imperfection of hard-

ware, tradeoffs could be made between computing quality and hard-

ware efficiency. This design methodology has become a promising

paradigm in the post-Moore era, known as Approximate Computing.

This paper presents an efficient framework to qualify the resilience of

DNNs with approximate operators, providing insights for hardware-

software co-design and optimization.

Unlike the near-perfect requirement in conventional computing

systems, DNN inference only requires a “good-enough” calculation

to guarantee reasonable application accuracy [1]. This relaxation of

computing quality can enable significant improvement in hardware

efficiency, exhibiting great opportunities in HW-SW co-design for

inference engines. Motivated by this, various approximate building

blocks and architectures are emerging, such as approximate multipli-

ers [2, 3, 4, 5], adders [6, 7, 8], and memory blocks, as well as algo-

rithm designs [9, 10], such as weight compression and quantization

[11, 12, 13, 14]. These approximate techniques have different mech-

anisms of error occurrence. For instance, SRAM failure caused by

the near-threshold operation and process variation yield a static error

pattern which is data-independent [15], while errors produced by op-

erators (e.g., multipliers and adders) are usually strongly correlated to

input data and dynamically change in the computing procedures[2].

These kind of differences cause uncertainty in the design phase of

DNN hardware, and the reliability issues after fabrication. Therefore,

it is vital to qualify the resilience of DNNs for various approximate

operators and techniques before proceeding to HW-SW co-design.

To maximize the hardware efficiency while providing quality

guarantees, we need to thoroughly examine and understand the re-

silience of a DNN computing graph. In other words, we have to

determine to what extent a DNN model could be approximated and

where the criterion of a “good-enough” operator lies in. The DNN

inference has long been treated as an end-to-end model in IoT ap-

plications. However, in the context of approximate computing, we

need to look inside the black box because the resilience varies in

layer and structure level. Such fine-grained analysis leads to a large

design space to explore. Thus an efficient framework is essential to

provide per-layer resilience evaluation before deploying the model to

approximate hardware.

In this paper, we present a DNN resilience evaluation framework:

Concrete. Concrete enables us to analyze per-layer and per-structure

resilience to approximate multipliers/adders and fixed-point quanti-

zation (weight/activation compression). Conventional frameworks

[15] only support static error simulation such as storage device fail-

ure, which is simple to implement with data preprocessing, yet not

feasible for approximate operators which dynamically produce errors

during the inference computing. Concrete is a fast and per-layer con-

figurable framework that can explore design space constructed by dif-

ferent types of approximate operator model, such as LUT (Look Up

Table) and logic behavioral model. With approximate kernel design

in BLAS (Basic Linear Algebra Subprograms) level, Concrete can

execute approximate operations on GPUs with a relatively small time

overhead. This feature is vital for large-scale DNN models such as

VGG and ResNet for running ImageNet classification. Besides, Con-

crete is independent of hardware architecture because the approxi-

mate operation is fine-grained to MAC (multiply-accumulate) level.

Hence the proposed framework is reliable for a range of architectures

and hardware designs for running DNNs.

This paper makes the following contributions:

• We design Concrete to be an efficient and flexible framework

that can rapidly evaluate the resilience of various DNN struc-

tures and layers on GPUs.

• The proposed framework offers user-friendly interfaces to

transform an exact DNN model to an approximate version

and supports different operator description such as LUT and

behavioral model.

• We execute a range of the most popular DNNs with three ap-

proximate operations, presenting per-layer and per-structure

sensitivity evaluations. According to the results, we provide

some options for DNN HW-SW co-design.

• The proposed framework supports re-training (fine-tuning) to

enhance the resilience of DNN models further. A case study

is provided to demonstrate this.

2. THE CONCRETE FRAMEWORK

2.1. An overview

An overview of the proposed framework is shown in Figure 1. Con-

crete is constructed by three fundamental building blocks: user inter-

face (a parser based on Python), the inference engine and the fine-
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Fig. 1. An overview of the proposed framework: Concrete. This

framework provides approximate inference evaluation and weights

fine-tuning for approximate models.

tuning engine. The user interface is an interpretation program im-

plemented by Python. It allows designers to define approximate de-

sign parameters and models using CAFFE-style protocol texts. Then

interpret the texts into executable scripts and compile the operation

models into CUDA kernels. The kernels are overridden into the in-

ference framework to replace the exact operators in the inference en-

gine according to user’s configuration. In runtime, the reconstructed

inference engine executes for requested iterations and generates the

evaluation results and the approximate DNN models. The fine-tuning

engine is inherited from CAFFE framework, in which the input of the

fine-tuning program is re-designed to satisfy the Concrete output.

The Concrete framework provides useful feedbacks for HW-SW

co-design procedure of DNN hardware. First, the framework can

evaluate approximate inference model with a per-layer granular-

ity, providing baselines for quality reconfigurable architecture de-

sign. Second, the framework could generate approximate hardware-

friendly models by dynamic weight quantization and fine-tuning

procedures. Last but not the least, the framework can be used to

conduct design space exploration among diverse design choices. It

benefits from the scalability of the Concrete framework which is

capable of running various approximate operation models.

2.2. Concrete Inference Framework

Implementation of Concrete inference framework is illustrated in Fig-

ure 2. The overall inference program includes three stages: the inter-

pretation stage, the reconstruction stage and the runtime stage. In the

first stage, the parser interprets the input parameters and approximate

model definitions into several executable scripts. Then the model

definitions are compiled to generate CUDA kernels for running on

GPUs. In the second stage, the main framework runs over all lay-

ers and executes the corresponding scripts to assign optional param-

eters such as fixed-point bit width and approximate factors. At the

same time, the CUDA kernels are overloaded into the DLLs (Dy-

namic Link Libraries) to replace the original exact operators, recon-

structing a user-defined approximate inference graph. Finally, in the

runtime, the reconstructed graph is executed on GPUs to evaluate the

model and resilience.

In general, there are two types of approximate operations re-

spectively enrolled in two stages. The weight quantization, which

is identified as the static approximation, happens in the reconstruc-

tion stage, while the approximate MAC operations(kernels) and the

activation quantization perform in runtime, due to their strong depen-
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Fig. 2. Implementation of Concrete inference framework. Both

static approximation and dynamic approximation are implemented,

but happen in different procedures of the whole process.

dence on input data. It is for such distinctions that Concrete could

run in high speed because the weight quantization is considerable

time-consuming if executed in runtime. Moreover, the approximate

kernels are optimized to run using multithreading on GPUs, which

further enhances the performance of Concrete. Time inspection for

Concrete suggests that running a DNN inference (using ResNet-18 as

an example in this context) with approximate operators only consume

1.05X-1.52X more time than running the original software model.

Moreover, Concrete running on GPU is 40.5X faster than executing

on CPU. In fact, it is quite time-consuming to use RTL-level sim-

ulation tools such as ModelSim to perform system level evaluation

(usually in days even months). Yet with the help of the proposed

Concrete framework, we could spend much less time (in minutes or

hours) on the evaluation of the approximate neural network design

before proceeding to actual hardware implementation.

Specifically, the parser for the user interface is built by Python,

and the main framework is built based on CAFFE with C++ and the

CUDA library. The overall implementation of Concrete inference

process is summarized as the following pseudo code.

2.3. Benchmarks and Baselines

To demonstrate the efficiency and feasibility of the proposed frame-

work, we collect five diverse DNN models to execute on Concrete,

such as 3-layer MLP [16], LeNet-5 [17], CifarNet [18], VGG-16 [19],

and ResNet-18 [20]. The dataset used for these DNN models are typ-

ical image classification tasks including MNIST, CIFAR10 and Ima-

geNet. A brief overview of the benchmarks is presented in Table 1.

For briefness of the large-scale DNNs such as VGG and ResNet, we

cluster the similar layers and structures into blocks, i.e., CB stands for

CONV-layer blocks, FB stands for FC-layer blocks, and SC stands for

shortcut layer in ResNet. The approximate operations we implement

in Concrete include weight/activation bits compression, approximate

multiply and accumulate. These operations are modeled in different

levels, and the diverse design options for these operations construct

various design space. An overview of the approximate operations is

presented in Table 2. All of the following evaluations are conducted

by Concrete running on a server with a 3.6GHz Intel Core i7-6850k

CPU and a single NVIDIA 1080ti GPU card.

1553



Algorithm 1 Implementation of the Concrete Framework.

Input: Pre-trained model; Quantization params; Operator defini-

tions.

Output: Classification accuracy.

1: procedure INTERPRETATION

2: Parameter parsing;

3: Approximate model compiling;

4: Generate executable scripts;

5: end procedure

6: procedure RECONSTRUCTION

7: for i in range (num. of layers) do

8: if layer[i].approx() is true then

9: Assign the approximate parameters;

10: layer[i].weight− > quantization();
11: Overload approximate kernels;

12: end if

13: end for

14: end procedure

15: procedure RUNTIME

16: GPUThreads.init();

17: for i in range (num. of iterations) do

18: net.Inference− > run();
19: end for

20: end procedure

Table 1. DNN benchmarks

Networks Dataset Structures
Baseline

Accu.(fp32)

MLP MNIST FC-1,2,3 0.971

LeNet-5 MNIST Conv-1,2 FC-1,2,3 0.989

CifarNet CIFAR10 Conv-1,2,3 FB 0.759

VGG-16 ImageNet CB-1,2,3,4,5 FB 0.886

ResNet-18 ImageNet
Conv-1 CB-1,2,3,4
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Fig. 3. An overall resilience evaluation of benchmarks using the ap-

proximate techniques in Table 2. All evaluations are conducted by

Concrete running on GPU.

3. EVALUATIONS

3.1. Overall Network Resilience

The overall resilience evaluations for benchmarks are presented in

Figure 3. The results exhibit a diversity of the fault tolerance of

Table 2. Approximate operations used in Concrete

Approx.

Operator
Model Option

Design

Space

Multiplier [2] LUT
Approx.

factor
[2, 4, ..., 14]

Adder [6] Logic Or-bits width [1,2,...,14]

Bit-width

Compression
Behavioral Bit width [1,2,...,10]
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Fig. 4. Per-layer resilience qualification given by Concrete. Each bar

corresponds to the highest approximate degree at which no accuracy

loss is observed. Some layers are clustered as layer blocks to avoid

verbosity.

DNNs with various approximate techniques. It appears that the

DNNs have better tolerance to quantization error than to computing

faults introduced by approximate multipliers and adders. The large-

scale networks exhibit particularly lower tolerance to approximate

operators due to considerably long accumulation paths. To better

understand the resilience of each layer and structure of DNNs, we

have to finer the granularity of evaluation with the help of the pro-

posed Concrete framework. The fine-grained evaluation results are

presented and analyzed in the following sections.

3.2. Per-layer Resilience Evaluations

Figure 4 presents the per-layer evaluation results acquired from Con-

crete. Each bar corresponds to the highest approximate degree at

which no classification accuracy loss is observed compared with

baselines. The results intuitively show that each layer of DNNs has a

diverse resilience to approximate operations. Besides, the resilience

significantly varies across the scale of DNNs and datasets. Such per-

layer analysis provides opportunities to benefit quality-configurable

architecture and hardware design.

The influence of quantization: The resilience to weights and

activations is presented respectively in the upper subgraph of Figure

4. It shows that in most cases the intermediate layers exhibit similar

resilience to both weights and activations. However, this conclusion

is incorrect for the first and the last layer of DNNs. The results con-

sistently reveal that the first and last layers of DNNs show higher re-

silience to weight quantization than activation quantization. This fact

is comprehensible because the influence of information loss in the

very first layer propagates across the entire network, causing lower-

robustness feature extraction in the subsequent layers. Moreover, the

output of the last layer directly corresponds to the classification re-
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Fig. 5. A case study: design space exploration for approximate mul-

tipliers using in LeNet-5 hardware implementation.

sults. Changes are high that low-bit fixed-point quantization for the

last layer finally results in misclassifications. This phenomenon sug-

gests that, in actual fixed-point computing design, the first and last

layer of DNNs should use higher quantization precision, especially

for activation representation.

Fault tolerance to approximate operators: The lower subgraph

in Figure 4 presents the relationship between operator approximation

and layer resilience. The results show that the intermediate layers

and structures in large-scale DNNs such as VGG and ResNet are

considerably less tolerant to the approximate adders and multipliers.

These layers have relatively dense connectivity and a large number of

weights, forming sophisticated fault accumulation paths. As a conse-

quence, the accumulated faults significantly change the distribution

of intermediate data, causing lower application quality. The results

suggest that the designers should be conscientious when applying ap-

proximate logics to such dense layers.

Resilience versus complexity: All the evaluation results reveal

a possible relation between resilience and the complexity of DNNs

and datasets. It shows that the smaller DNNs targeting to simpler

datasets are usually much more tolerant to both data quantization and

imprecise operators than large-scale DNNs and classification tasks.

In actual approximate hardware design for DNNs, such fine-grained

qualification is necessary to conduct in HW-SW co-design phase to

ensure the feasibility of DNN chips after fabrication.

3.3. Fine-tuning for Better Resilience: A Case Study

A typical scenario of approximate hardware design is determining op-

timal design parameters (e.g., approximate factor) among numerous

choices. Taking approximate multiplier [2] for example, two design

parameters - M and P, denoting different approximate logic and ap-

proximate degree respectively - need to be specified. There are six

kinds of logic (M1-M6) and seven approximation degrees (P2-P14)

in total, formulating a design space in which 6x7=42 subtypes of the

multiplier need to be explored. It is an impossible task to establish

and simulate RTL descriptions for all these design options using tra-

ditional hardware design toolchains. Fortunately, with the help of the

proposed framework, designers can explore the design space much

more efficiently, and conduct fine-tuning to enhance further the re-

silience of the pre-trained models to gain higher hardware efficiency.

In this section, we present a case study of LeNet-5 leveraging 42

types of approximate multipliers. The results (see Figure 5) show the

optimal multiplier for LeNet-5 is M4P8 for its lossless classification

accuracy and relatively low energy consumption. Note that the re-

sult changes to M4P14 after fine-tuning the weights with the approx-

imate inference engine. This change implies a significant improve-

ment of the resilience of LeNet-5, and 37% more energy saving can

be expected in actual hardware implementation. Table 3 presents the

variation of classification accuracy after weight fine-tuning, demon-

strating the importance of fine-tuning in the context of approximate

hardware design for DNNs. The whole exploration is conducted by

the proposed Concrete framework on a single NVIDIA 1080ti GPU

card. The total time consumption for running 42 subtypes is less than

1 hour, of which 95% percent is consumed by the fine-tuning proce-

dure.

Table 3. Quality variation of each design choice after fine-tuning.

gain(%) P2 P4 P6 P8 P10 P12 P14

M1 -0.62 -0.64 0.45 44.39 87.17 88.51 88.76

M2 -0.64 -0.60 0.59 87.49 6.21 26.53 1.67

M3 -0.60 -0.55 0.90 87.59 0.19 10.52 52.80

M4 -0.62 -0.64 -0.58 0.32 83.86 86.04 86.34

M5 -0.64 -0.60 0.60 87.53 81.07 7.79 0.54

M6 -0.60 -0.55 0.69 87.57 -0.27 78.59 58.90

4. CONCLUSION

We present a fast and flexible framework, namely Concrete, that can

rapidly execute and evaluate approximate DNN models, providing

fine-grained resilience analysis to support HW-SW co-design for

DNN inference engines. To demonstrate the efficiency and feasi-

bility of the proposed framework, multiple popular DNNs ranging

from MLP to VGG16 and ResNet are qualified with various approxi-

mate operators and models. The results exhibit some viewpoints and

observations in the resilience aspect of DNNs. These findings and

contributions of this paper could provide better options and insights

for future approximate design for DNN hardware communities. The

Concrete framework is architecture independent for now, which

means Concrete only enables software-level evaluation. In our future

work, we will take popular hardware NN architectures into account

to support architecture-level approximate design evaluation.
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