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ABSTRACT

Inertial navigation allows tracking and updating the position and ori-
entation of a moving object based on accelerometer and gyroscope
data without external positioning aid, such as GPS. Therefore, iner-
tial navigation is an essential technique for, e.g., indoor positioning.
As inertial navigation is based on integration of acceleration vector
components, computation errors accumulate and make the position
and orientation estimate drift. Even though maximum computation
precision is desired, also efficiency needs consideration in the age
of Internet-of-Things, to enable deployment of inertial navigation
based applications to the smallest devices. This work formulates the
Direction Cosine Matrix update algorithm, a central component for
inertial navigation, in fixed-point and analyzes its precision and com-
putation load compared to a regular floating-point implementation.
The results show that the fixed-point version maintains very high
precision, while requiring no floating point hardware for operation.
The paper presents execution time results on three very different em-
bedded processors.

Index Terms— inertial navigation, mobile device, energy effi-
ciency, fixed-point

1. INTRODUCTION

Nowadays GPS positioning has become mainstream and is available
in many mobile consumer devices for reasonably accurate outdoor
positioning. However, inside buildings, underground, and when oc-
cluded by large obstacles, the GPS signal is either not available at
all, or offers only limited precision. In such places, other positioning
techniques such as inertial navigation are however available.

Inertial navigation is based on accelerometer and gyroscope sen-
sor (also known as inertial measurement unit, IMU) signals that are
sampled at a frequency in the range of 102 ... 103 Hz. The IMUs
contain typically three gyroscope vectors and three accelerometer
vectors for three orthogonal axes, corresponding to angular velocity
and linear acceleration. For each new set of samples, the orientation
and position estimate is updated with respect to a known starting
point, based on strapdown inertial navigation algorithms [1].

Compared to the processing power of laptop and smartphone
processors, the required signal processing computations are not very
demanding, despite their real-time requirements. However, with the
recent Internet of Things trend, various smart objects with very lit-
tle processing power can become the processing platform for iner-
tial navigation [2]; moreover, such tiny microcontrollers are rarely
equipped with floating-point computing hardware.

In this paper, a fixed-point formulation of a central signal pro-
cessing algorithm for inertial navigation, updating of the Direction
Cosine Matrix (DCM) is presented. The fixed-point version allows
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Fig. 1. Representation of the coordinate frame, the linear accelera-
tion and the attitude.

performing the computations using regular integer operations sup-
ported by every programmable processor. In addition to the fixed-
point formulation, a variety of precision-increasing optimizations are
presented and applied. Finally, the paper provides measurements
that illustrate the processing time requirements of the fixed-point
DCM implementations for three embedded processors.

The organization of the paper is as follows: Sections 2 and 3 ex-
plain the theoretical premises and previous work related to the paper;
Section 4 presents our fixed-point formulation of the DCM update al-
gorithm; Section 5 shows accuracy and execution time measurement
results, and Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK

To understand the existing research, the concepts of coordinate
frame and attitude need explaination: a coordinate frame is an
analytical abstraction defined by three unit vectors that are perpen-
dicular to one another, often numbered consecutively. The frame can
be visualized as a set of three perpendicular axes passing through a
common point (origin) with the unit vectors starting from the origin
along the axes. The attitude of an object is the orientation of an
object in space. It can be represented as three angles of rotation
(Euler angles) around the three axes of the frame as shown on the
Fig. 1.

The inertial navigation algorithms discussed in this work have
originally been presented in the seminal work of P. Savage [1]. As
presented in [1], attitude parameters for representing the angular re-
lationship between two coordinate frames are the direction cosine
matrix CA1

A2
and the rotation vector p. The direction cosine matrix
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transforms a vector from the reference frame A2 to frame A1:

CA1
A2

vA2 = vA1 .

The rotation vector p defines an axis of rotation and its mag-
nitude defines the value of rotation. Similarly as with the direction
cosine matrix, the rotation vector can be used to define the attitude
between frames A2 and A1. If frame A1 is rotated about the rota-
tion vector p through the angle p =

√
pTp, the new attitude can be

uniquely used to define frame A2. The relationship between the di-
rection cosine matrix and the rotation vector can be used to transform
any rotation vector to uniquely define the direction cosine matrix:

CA1
A2

(p) =

{
I + sin(p)

p
(p×) + 1−cos(p)

p2
(p×)(p×) if p 6= 0

I otherwise,

where p× is a matrix composed from values x, y and z of p.
Commonly used Euler angles are not good in computing kine-

matic orientations of object [3]. To specify the attitude of an object
using known Euler angles roll Φ, pitch Θ and yaw Ψ (presented in
the Fig. 1), direction cosine matrix can be converted as follows [4].

In a spin at yaw, the following matrix can be used to pass from
a coordinate frame to another:

CΨ =

 cos (Ψ) sin (Ψ) 0
− sin (Ψ) cos (Ψ) 0

0 0 1

 (1)

In a spin at pitch, respectively:

CΘ =

 cos (Θ) 0 − sin (Θ)
0 1 0

sin (Θ) 0 cos (Θ)

 (2)

And finally, in a spin at roll :

CΦ =

 1 0 0
0 cos (Φ) sin (Φ)
0 − sin (Φ) cos (Φ)

 (3)

Thereby the direction cosine matrix (DCM) can be obtained as:
CA1

A2
= CΨ ∗CΘ ∗CΦ.

As explained in [1], the columns (and rows) of the DCM repre-
sent orthogonal unit vectors. These vectors need to be unity in mag-
nitude and mutually orthogonal to one another. For that, in addition
to the basic DCM update algorithm, renormalization and orthogo-
nalization algorithms are commonly applied.

2.1. Related work

The number of previous works that analyze the DCM computation
part of [1] are few, although there are some works [5] [6] that study
the complete inertial navigation algorithm without addressing the
optimization of individual algorithm components. [7] provides a
concise description of the physical principles of inertial navigation,
the associated growth of errors and their compensation. Another
branch of works, [8], [2] and [9], study the quaternion presenta-
tion for attitude and position update instead of DCM. Quaternions
give a mathematical notion for representing orientations and rota-
tions of objects in three dimensions similar to rotation matrices and
Euler angles. The work [10] presents an implemented inertial navi-
gation system, but is not based on the DCM approach. Furthermore,
[11] relies on GPS signals in addition to inertial navigation. Regard-
ing fixed-point INS computations on microcontrollers, [2] presents

a quaternion-based approach, where zero-velocity test statistics are
computed in fixed-point on a 32-bit microcontroller. However, other
parts of the algorithm are implemented in floating-point.

3. THE DIRECTION COSINE MATRIX ALGORITHM

Algorithm 1 Direction Cosine Matrix algorithm

1: in = gyrodata (i, :)′ ∗T

2: C1 =

 0 −in3 in2

in3 0 −in1

−in2 in1 0


3: C2 = C1 ∗C1

4: p =
√

in′ ∗ in

5: out = I + sin(p)
p
∗C1 + 1−cos(p)

p2 ∗C2

6: DCM = DCM ∗ out

The initial formulation of the DCM algorithm is presented in Al-
gorithm 1, where T represents the sampling period, and I represents
the identity matrix. The variable in contains sampled gyroscope data
for x, y and z axes. The algorithm is executed for each new set of
(x, y, z) samples for updating the DCM matrix. This behavior makes
the algorithm recursive and causes propagation of estimation errors
to the following samples.

Considering real-time implementation on a very low-resource
device, the computation of cosine and sine functions are complex to
implement and therefore, the Taylor approximation (from [1]) of the
algorithm presented in Equation 4 is used. The approximation turns
line 5 of Algorithm 1 into

out = I+
(

1− p2

6
+

p4

120

)
∗C1 +

(
1

2
− p2

24
+

p4

720

)
∗C2 (4)

where p2 = in′ ∗ in and p4 = p2 ∗p2. Irrespective of whether
Algorithm 1 is implemented by trigonometric functions or by Taylor
approximation, its accuracy can be further improved by introducing
renormalization of the DCM matrix as follows:

DCM = DCM +
1

2
∗ (I−DCM ∗DCM′) ∗DCM.

This renormalization needs to be done just after the line 6 of
Algorithm 1 and needs to be computed for each new set of (x, y, z)
samples.

Going beyond the work of Savage [1], this paper presents a
fixed-point formulation of Algorithm 1 based on the Taylor ap-
proximation, and renormalization. The key question in such fixed-
point formulations, compared to straightforward floating-point, is
to ensure that computation precision is maintained and overflow is
avoided.

3.1. Transformation to fixed-point

A fixed-point number is an integer number, which corresponds to a
floating-point number. As the name says, the fixed-point representa-
tion assumes a fixed number of bits before and after the radix point.
This represents a trade-off between dynamic range and precision,
dictated by the place of the radix point.

In order to create high-quality fixed-point implementations, the
dynamic ranges of variables need to be determined. Computing of
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the dynamic range can be performed either by simulation or by in-
terval arithmetic [12]. Then, with the known dynamic range, it is
possible to calculate the number of bits for the integer part (left side
of the radix point) using the following equation:

Mx = floor(max(abs(x))) + s + 1,

where s = 0 if x is unsigned, and 1 otherwise, and Mx is the number
of bits for the integer part. With the total number of bits and the
number of bits for the integer part, it is possible to deduce the number
of bits for the fractional part. After that, the floating point input data
needs to be scaled by the number of bits of the fractional part of the
data.

4. PROPOSED WORK

The proposed fixed point formulation of the DCM algorithm is pre-
sented in Algorithm 2. In this algorithm, every variable is repre-
sented with 32 bits. The right-hand side of the algorithm description
shows the fixed-point format of each intermediate result in the stan-
dard Qx notation, where number on the left side of the radix point
signifies the count of integer bits, and the number of the right side of
the radix point the count of the fraction bits. Lower wordlengths (8,
16) were not considered as in inertial navigation very high precision
is required.

In order to determine the position of the radix point, the scale
of the input data needs to be fixed. In our case, the scale was de-
termined by the maximum signal amplitude that the sensors were
able to provide, which was -20.0 to 20.0. To represent this signal
scale, 6 integer bits (including sign bit) are required, which leaves
26 bits for the fractional part. Below, the numeric precision of each
intermediate result is presented in detail.

Algorithm 2 Direction Cosine Matrix algorithm in fixed point

1: in = gyrodata (i, :)′ Q6.26

2: C1 =

 0 −in3 in2

in3 0 −in1

−in2 in1 0

 Q6.26

3: C2 =



C11 ∗C13

+C12 ∗C16 C12 ∗C17 C11 ∗C15

C13 ∗C11

C15 ∗C16 +C15 ∗C17 C13 ∗C12

C16 ∗C12

C17 ∗C13 C16 ∗C11 +C17 ∗C15


Q10.22

4: p2 = in3 ∗ in3 + (in2 ∗ in2 + in1 ∗ in1)>> 1 Q10.22
5: p4 = p2 ∗ p2 Q19.13

6: Cff1 = 231+
((

p4 ∗ 264

120

)
>> 9− p2 ∗ 246

6

)
>> 7 Q1.31

7: Cff2 = 231+
((

p4 ∗ 267

720

)
>> 9− p2 ∗ 248

24

)
>> 8 Q0.32

8: C100 = 237

100
Q− 5.37

9: C2Cff2 = C2 ∗Cff2 ∗C100 Q3.29
10: out = C1 ∗Cff1 + (C2Cff2)>> 3 Q6.26
11: out = I + (out ∗C100)>> 2 Q1.31
12: DCM = DCM ∗ out Q1.31

13: DCM = DCM +
(I−DCM∗DCM′)∗DCM

2
Q1.31

The matrix C1 is directly composed from the input data, and
therefore its format is also Q6.26. The matrix C2, in contrast, is the

square of C1, which requires increasing the number of bits reserved
for the integer part, and respectively discarding some of the least
significant bits (lsb). In the multiplications for computing C2, 30
lsbs are discarded from the product, and additions are not assumed
to require additional integer bits as according to the dynamic range of
the output, and the operands of theses additions, the same number of
bits is needed to code the integer part of the output and the operands.
Line 4: 30, 28 and 28 lsbs are discarded from the products of in3 ∗
in3, in2 ∗ in2 and in1 ∗ in1, respectively. However, as the addition
of in2 ∗ in2 + in1 ∗ in1 provides one additional bit, the sum needs to
be shifted by 1 to align the radix points for addition with in3 ∗ in3.
On line 5, 31 lsbs are discarded from the product of p2 ∗ p2. Cff1

is in Q1.31 and Cff2 in Q0.32 because their values are below 1
and 0.5, respectively. Shifts are needed to align the radix points for
additions. On line 8, the sampling period of 1

100
is represented in

Q-5.37, i.e. the first significant bit of this number is the 6th bit of the
decimal part. Thus to represent this number, the sign bit and the bits
6 ... 36 are needed, and 1

100
is scaled by 237. On line 9, 31 lsbs are

discarded from the products of C2 ∗Cff2 and C100. Similarly, the
31 lsbs are discarded from the product of C1 ∗Cff1 on line 10. The
output values on the lines 11, 12 and 13 are below 1, so only one bit
is needed for representing the integer part of each output.

Divisions by constants are implemented by multiplication with a
scaled fixed-point constant. For example, on line 6, division by 120
is implemented by multiplying p4 by 264

120
.

Algorithm 2 represents the fully featured version of the fixed-
point DCM algorithm. However, in order to reduce the computa-
tional effort for low-end devices, also a couple of simplified DCM
versions were created. The simplifications affect code lines 5, 6, 7
and 13 in Algorithm 2, and the versions are described below:

1. Basic: a basic fixed-point implementation that uses no round-
ing of computation results, but simply truncates results to the
maximum supported bitwidth. In this version, the 4th degree
polynomial component p4 of Equation 4 and renormalization
are not included in computations.

2. NN: an improved version of basic, where nearest-neighbor
rounding is adopted in multiplications instead of truncation.

3. NN+P4: an improved version of NN, where the 4th degree
polynomial component is included to computations.

4. NN+P4+ReNorm: same as the version NN+P4 with renor-
malization of the DCM matrix.

Table 1 presents the computational complexity of each version
in terms of additions and multiplications per one set (x, y, z) of input
samples.

All the algorithm versions were written in plain C language
without target-specific assembly. Intermediate results of fixed-point
multiplication were stored to 64-bit integers before scaling back to
32-bits. The target processors had varying datapath bitwidths, but
the target-specific C compilers automatically handled the arithmetic
for bitwidths that surpass the target’s datapath width.

5. EXPERIMENTS

The fixed-point version of the algorithm was evaluated with a dataset
that had been acquired from a moving vehicle (a personal car). Since
the original dataset contained relatively slow acceleration compo-
nents, a second version of the dataset was generated by amplifying
the signal such that the maximum dynamic range of the IMU sensors
could be reached, i.e. it was converted to a full-scale signal prior to
fixed-point conversion. The dataset was recorded at a frequency of
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Table 1. Number of fixed-point additions and fixed-point multipli-
cations for each algorithm version.

Basic NN NN NN+P4
+P4 +ReNorm

Additions 43 123 129 231
Multiplications 80 80 83 137
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160

Basic NN NN+P4 NN+P4+ReNorm

Original Full-scale

Fig. 2. Accuracy of the results as signal-to-noise ratio (in dB scale).

100 Hz and it consists of 66267 samples, which corresponds to 11
minutes in wall-clock time.

The fixed-point implementation needed to be compared to a ref-
erence implementation to be able to assess its accuracy. As the refer-
ence algorithm we used a double-precision floating point MATLAB
implementation of the DCM algorithm that was based on trigono-
metric functions. As computation inaccuracies accumulate during
the estimation process in inertial navigation, comparing the accuracy
of the fixed-point version to the floating-point reference was possi-
ble simply by computing the signal-to-noise ratio (SNR) between the
end result of the fixed-point version against the reference. Since the
DCM matrix consisted of nine elements, each element was taken
in account in the SNR computation using the equation SNR =
20 ∗ log10((ref0/fxp0 + ref1/fxp1 + ... + ref8/fxp8)/9) dB,
where ref and fxp are the DCM matrix values provided by the ref-
erence implementation, and by the fixed-point implementation, re-
spectively. Subscripts indicate DCM matrix cell indices. When con-
verted to linear scale, for example the SNR of 120 dB equals to a
deviation of 10−6 in the DCM matrix cell value.

The graph of Fig. 2 presents the SNR of results for both the orig-
inal input signal, and full-scale input signal that achieves the maxi-
mum IMU signal amplitude. Looking at Figure 2, it can be seen that
the accuracy does not increase between versions NN and NN+P4 for
the original input signal. The reason for this is that the 4th degree
polynomial component only has an effect when rapid acceleration
changes are present, which is not the case for the original input.

This highlights the fact that when the DCM update algorithm is
tailored for a low-resource device, the designer should be aware of
a) the dynamic range of the input signal, but also b) the speed of
signal variation. If it is known that the input signal can in no circum-
stances experience fast variations (e.g. a slowly moving robot), the
4th degree component can safely be omitted for somewhat increased
computational efficiency.

Except for the aforementioned case, the fixed-point accuracy of
algorithm versions steadily grows from version 1) to 4), however at
the same time the computational complexity increases, which needs
to be considered for ultra-low resource devices and for maximization

Table 2. Processing time results of NN+P4+Renorm on various plat-
forms.

Device Achievable sample rate
Microchip ATmega 2560 (8-bit) 0.275 kilosamples/s
SiFive Freedom E310 (32-bit) 12.68 kilosamples/s
Qualcomm Hexagon 682 2148 kilosamples/s

of power efficiency and/or sample rate.
The computational complexity of the fixed-point algorithm was

also measured on a variety of devices that are listed in Table 2. The
devices reflect different categories of embedded processors, where
the AtMega 2560 is a tiny 8-bit microcontroller, HiFive1 is a mod-
ern RISC-V microcontroller, and Hexagon 682 is a DSP commonly
found in today’s smartphones.

As the data wordlength of the AtMega 2560 is 8 bits, heavy soft-
ware support (automatically provided by the C compiler) for com-
putation with 32-bit integers is required. As a consequence of this
software emulation of longer bitwidths, the achieved sample rate is
only suitable for low frequency inputs, and even then it requires all
the computation resources of the microcontroller.

The up-to-date RISC-V microcontroller can easily handle the
processing at kHz rates, which means that such a processor can per-
form the DCM update besides other tasks. Finally, for the Hexagon
DSP the fixed-point algorithm only yields a negligible computational
burden.

6. CONCLUSION

In this paper, a fixed point version of the DCM update algorithm
for inertial navigation has been provided, and its numerical accu-
racy has been measured for two different input signals with several
accuracy-improving optimizations. The experimental results show
that the accuracy of the fixed-point implementation can come very
close to the floating-point version despite the fact that the algorithm
is recursive, which causes accumulation of errors.

The results also show that considering the nature of the input
signal is important in maximizing the computation efficiency; for
example, if the input signal cannot be expected to contain fast varia-
tion, computations can be simplified without an impact on accuracy.

Measurements on three highly different target devices show that
the fixed-point DCM update algorithm can be executed for low sam-
ple rates even on the smallest microcontrollers, and on more power-
ful devices the real-time computations only require a fraction of the
processing time.

As future work, a quaternion-based solution of the algorithm
should be implemented in fixed-point to see how this alternative for-
mulation performs in terms of efficiency / accuracy. Also, as iner-
tial navigation solutions inevitably drift quite rapidly, the numerical
accuracy aspects of error constraining filters [13] such as extended
Kalman filters should be also taken into account.
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