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ABSTRACT

In recent years, the number and variety of heterogeneous
multiprocessor system-on-chip MPSoCs, such as for instance
Zynq platforms, has sensibly increased. However, today all
design flow solutions capable of programming the differ-
ent components of such platforms require to the designer
either to modify the software or hardware based designs to
obtain higher performance implementations. Thus, the de-
veloper needs to either rewrite functional blocks in HDL or
to use high-level synthesis of C-like sequential languages
with platform locked extensions. In this paper, a compiler
infrastructure that takes as input a single behavioral represen-
tation, expressed in high-level dataflow RVC-CAL language,
is proposed for programming any of the components of het-
erogeneous Zynq MPSoCs platforms without the need of
modifying any line of code on the design.

Index Terms— dataflow programing, heterogeneous
computing, RVC-CAL, Zynq

1. INTRODUCTION

The emergence of reconfigurable Multiprocessor Systems on
Chip (MPSoCs) platforms with several processing cores and
reconfigurable logic resources such as the Xilinx Zyng-7000,
the Ultrascale+ series, the Altera/Intel Stratix and Arria SoCs,
provide to designer powerful means to implement large and
complex system designs. Nonetheless, to fully exploit the
potential capabilities of such devices, it is required to exe-
cute multiple tasks in parallel using both processing cores
and programmable logic resources. Xilinx and Altera de-
vices are supported by CAD tools for programming the MP-
SoCs by using C/C++ designs based on proprietary pragmas
or OpenCL APIs, as a consequence the design incorporates
platform locked attributes. An alternative method for pro-
gramming MPSoC is to use more general dataflow program-
ming approaches, like RVC-CAL, which is platform agnostic
by design.

The contributions of this work are the following: how
to express the system architecture of a dataflow program in
a heterogeneous platform, the necessary interfaces for en-
abling bidirectional communication between heterogeneous
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processing elements (PE), and the code generation for pro-
cessing cores and programmable logic. The mapping of the
actors to each processing element of the heterogeneous plat-
form is statically assigned before the code-generation. For an
automatic mapping procedure based on the profiling of the
dataflow program, the interested reader can refer to [1].

Dataflow programming models have a long and rich his-
tory dating back to the early 1970s [2, 3]. A dataflow pro-
gram is intended as a (hierarchical) directed graph in which
nodes (called actors) represent the computational kernels and
directed edges (called buffers) represent the lossless, order
preserving, and point-to-point communication channels be-
tween actors. Buffers are used to communicate sequences of
data packets (called fokens). In literature, several variants of
dataflow have been introduced [3, 4, 5], often referred to as
different dataflow Model of Computation (MoC). One com-
mon property shared by all dataflow MoCs is that individual
actors encapsulate their own state, and do not share their in-
ternal states. Instead, actors communicate with each other ex-
clusively by sending and receiving tokens by means of buffers
connecting them. The absence of race conditions makes the
behavior of dataflow programs more robust to different exe-
cution policies. The paper is organized as follows: Section 2
gives a summary of related work of tools for dataflow pro-
gramming, Section 3 describes the compiler infrastructure for
the Zynq platform and the original contribution provided by
this work. Section 4 demonstrates the capabilities of the com-
piler by partitioning a design into multiple arbitrary configu-
rations, and finally, Section 5 concludes the paper.

2. RELATED WORK

PREESM [6] based design flows are based on decidable
parametric synchronous dataflow (PiSDF) [7] MoC, re-
cently [8] PREESM has been extended to support MPSoC
by using Xilinx SDSoC. A tool supporting mapping Kahn
Process Network based designs onto heterogeneous MPSoCs
is MAPS [9], it uses C to describe actors. In [10] , the au-
thor are using parametric SDF with actors expressed as C++
classes for a heterogeneous platform without reconfigurable
logic. The DAL framework [11] is based on KPN MoC
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and an extension [12] targeting heterogeneous systems with
OpenCL enabled devices is also available. DKPN such as
the ones reported in [13], support mixed Dataflow Process
Network(DPN)/KPN execution models for mapping stream-
ing applications on heterogeneous MPSoC. Compared with
the previous works, the approach of this paper is to use as
MoC [14] the DPN with firing, specifically expressed by the
ISO/IEC standardized programming language called RVC-
CAL [15]. With the RVC-CAL expressiveness, it is possible
to describe dataflow networks composed by processing ele-
ments implementing DPN, KPN, SDF and CSDF(cyclo-static
dataflow) MoCs.

3. CONTRIBUTIONS ON EXELIXI FOR ZYNQ

The Open RVC-CAL compiler [16] (Orcc) is based on Model-
Driven Engineering (MDE) by representing the Intermediate
representation (IR) with meta-models. The compiler infras-
tructure used as main compiler backbone for the design flow
is made of four main components: the front-end, the IR, the
back-end and the interpretation stage. In this work a tool call
Exelixi [17] is used as middle-end and back-ends of Orcc.
A illustration of the compiler infrastructure and its main ele-
ments is depicted in Fig.
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Fig. 1: The compiler infrastructure that we use in this work.

Exelixi accepts as input the Orcc IR built from RVC-CAL
networks. For a given a platform, Exelixi transforms the IR
of each actor by generating C++ and/or HDL source code.
A dataflow program can thus be partitioned according to the
specification provided by an XML configuration file (XCF)
or directly by interacting with the user interface provided by
Orcc user interface. Exelixi reads the mapping configuration
and depending on how the actors of the network are mapped
on a hardware (FPGA programmable logic) or a software pro-
cessing element (CPU eg. x86 or ARM), generates the appro-
priated source code. For software mapped actors it generates
C++ code as described in [18]. Specifically for the Zynq plat-
form, Exelixi generates a set of baremetal I/O drivers/func-
tions for controlling the peripherals of the ARM processor.
For hardware mapped actors it generates C/C++ code for Vi-
vado HLS. The actor I/O uses the Vivado HLS stream inter-
face and the action selection as described in [17]. Every actor
is exported as a Vivado IP core. The hardware network is rep-
resented as a Vivado TCL script file which interconnects the
IP core actors with an Accelerator FIFO IP core. The RTL in-
terface between the actors and the FIFOs is called Accelerator

Handshake Interface or ACI. Finally, the partitioned network
is represented in Vivado as a hierarchical IP core, depicted as
PL Partitioned Network in Fig. 2.

In this work, the capabilities described in [19] have been
extended by creating a new multiple input/output interface for
mapping dataflow programs on Zynq platform. Zynq MP-
SoCs are separated into two parts, a Processing System (PS)
and a Programmable Logic (PL) section. The on-chip PS is
connected to the on-chip PL through multiple ARM AMBA
AXI ports. There are two 32-bit AXI master interfaces (GP
Master), two 32-bit AXI slave interfaces (GP Slave), four 64-
bit high-performance AXI slave interfaces (HP Slave), and
one 64-bit AXI Accelerator Coherency Port (ACP slave) in-
terface. HP slave interfaces have a direct connection to the
DDR memory controller of the PS.
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Fig. 2: A high-level representation of how Exelixi interfaces
the PL and the PS parts of the Zynq platform.
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The HPO is used for data communication and the GPO for
the control of the IP cores. Fig. 2 depicts a high-level repre-
sentation of how Exelixi connects the PS and PL sections, for
simplicity not all connections are represented. The data com-
munication between PS and PL is obtained by using the AXI
Stream DMA TP core. This core is enabled for read and write
channels. All the incoming and outgoing FIFOs of the PL
shares a single AXI Stream DMA IP Core. Exelixi generates
two IP cores for the communication with the PL partitioned
network: the PL Input wrapper and the PL. Output wrapper,
for converting the AXI Stream data from/to a set of ACI in-
terfaces of the DMA IP core. The AXI Stream DMA IP core
is connected to the HPO slave interface through an AXI in-
terconnect. All bidirectional communications are controlled
through the PS. The PS controls, from the GPO interface, in
which Accelerator FIFO IP Core the data should flow from
or to the AXI Stream DMA IP core. This is achieved by
baremetal drivers in PS, which are generated automatically
depending on the partitioning configuration, that controls the
AXI DMA TP Core and the PL I/O wrappers. If an actor in
the PL requires a large state variable (e.g. a framebuffer for a
video decoder), then an AXI Master interface from the PL ac-
tor is connected to the HPO. Thus, it is possible for any actor
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to access directly the DDR memory. The compiler does not
automatically attribute large state-variables to the DDR, is up
to the designer to provide a directive to Exelixi (@external)
linked to the RVC-CAL state variable to enable such a fea-
ture. Finally, given a partitioning configuration, the compiler
generates a Vivado TCL file that represents all the intercon-
nection between the generated IP cores and the Xilinx ones.

4. EXPERIMENTAL RESULTS

The purpose of following experiments is to demonstrate that
from the same behavioral representation without changing
any line of code, but just giving a mapping configuration, it
is possible to partition the actors of the dataflow program into
the heterogeneous PEs of the MPSoC.

Fig. 3: MPEG-4 SP Decoder, yellow boxes represents a net-
work of actors, blue boxes represents actors.

To demonstrate the compiler capabilities we use the same
dataflow MPEG-4 SP decoder as in [20]. The design uses
the RVC-CAL behavioral description and its fully compliant
with the ISO/IEC 14496-2 standard. Fig.3 represents a snap-
shot of the decoder as displayed in the user interface of Orcc.
The blue boxes represent actors and the yellow boxes com-
positions of actors (or a network of actors). The source and
display actors implement platform based functions for read-
ing a file from the system (e.g. from an SD card) and display-
ing results on a screen respectively. The entire description of
the decoder is a composition of 34 actors, connected in five
networks: parser, acdc, idct2d, motion, and memory. The
second row of Table 1 specifies the number of Actors per net-
work.

The decoding process of the MPEG-4 SP can be summa-
rized as follows. The source actor reads MPEG4-SP stimuli
from a file and feeds the parser with a stream of bytes. Then,
the parser operates the entropy decoding and sends the data to
the rest of the decoder. The acdc block performs the AC/DC
prediction for Intra macroblocks. The idct2d performs the
inverse discrete cosine transform on those macrbolocks and
then the motion compensation (motion) block selectively adds
the macroblocks by issuing from the IDCT the blocks taken
from the previous frame. Consequently, the motion compen-
sation needs to store the entire previous frame of video data,
which it also needs to address into with a certain degree of
random access. This operation is effectuated by the actor ddr
included in the memory network. Finally, the decoded frames
are displayed by the display actor.

We are using the Zedboard embedded board for the exper-
imental results. The Zedboard contains a Xilinx XC7Z020
MPSoC with two ARM cores (PS) clocked at 667Mhz, an
FPGA (PL) with 85k slices, 512Mb DDR3 memory, and
different I/O peripherals. Exelixi currently supports only
baremetal applications on the PS and only one ARM core is
used. The generated code includes any optimized function
for the ARM core or optimized IP cores in the PL. For all
the partitions reported below on the PS, the source code is
compiled with -O3 flag. All actors on the PS are executed
sequentially with a non-preemptive round-robin scheduler.
All actors in PL are executed in parallel.

src | parser | acdc | idct2d | motion | memory | display | PL Connections
Actors 1 5 7 12 6 2 1 Inputs | Outputs
P1 PS PS PS PS PS PS PS 0 0
P2 PS PL PS PS PS PS PS 1 6
P3 PS PL PL PS PS PS PS 1 6
P4 PS PL PL PL PS PS PS 1 5
P5 PS PL PL PL PL PS PS 2 6
P6 PS PS PL PL PL PL PS 4 1
P7 PS | PS/PL PL PL PL PL PS 7 1
P8 PS PL PL PL PL PL PS 1 3

Table 1: Partitioning configuration of actors and networks
between PL and PS.

The compiler supports most of the Xilinx 7th series de-
velopment boards as long as they are supported by Vivado.
The user of Exelixi can select the mapping configuration ei-
ther by the user interface of Orcc or by specifying an XML
configuration file (XCF) which actor or network (as a sub-
network of the top network) is going to be executed either in
the PS or the PL. To demonstrate the capabilities of the com-
piler, 8 partitioned configurations have been created as de-
picted in Table 1. From P1 to P6, one network after the other
has been gradually included in the PL. For configuration P7
the parser network is divided between the PS and the PL, and
for P8 all networks are placed in the PL. In addition, Table 1
shows the number on incoming and outgoing connections to
PL for each partition. Each FIFO of has a depth of 1024 to-
kens even for the border FIFOs that connect the PS and PL
partitions. The PL part of the XC7Z020 has limited availabil-
ity of BRAMs which restricts the usage of large depth FIFOs.
To optimize the performance of the PS partition, the actor
scheduler is a non-preemptive round robin, since decreasing
the FIFO depths will decrease its output throughput [1]. It can
also be mentioned that the decoder does not need such large
FIFO depths [20]. Finally, the source and display actors are
always included on the PS partition, as they use native Xilinx
baremetal functions.

Resources %
Paritition | Pl P2 P3 P4 P5 P6 P7 P8 Available
LUT 0 18 | 22.03 | 27.81 | 31.83 | 29.64 | 32.23 | 34.89 53200
LUTRAM | 0 4 466 | 463 | 482 | 637 6.4 6.4 14700
FF 0 9 10.78 | 14.19 | 16.07 | 1647 | 17.25 | 17.84 | 106400
BRAM 0 | 3.62 | 1244 | 30.8 | 38.57 | 34.93 | 48.93 | 54.29 140
DSP 0 0 136 | 4.55 | 455 | 455 | 455 | 455 220

Table 2: FPGA Resources for different partitioning configu-
rations.
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Exelixi permits to set the clock configuration for the PS
and the PL of the Zynq platform. For the PS the maximum
clock frequency is set to 667Mhz. For the PL we use a clock
frequency of 100Mhz. Table 2 depicts the post implemen-
tation FPGA resources used for each mapping configuration.
As we include gradually the networks to the PL partition, the
hardware resources are increased. The most demanding re-
source usage in the FPGA is the BRAMs on which the FIFO
are placed. The DSPs are used in the DC prediction actor
of the acdc network which uses a 13-bit integer division and
the multiplications of the idct2d. It is to be mentioned that
the ddr actor of the memory network, which stores the frame-
buffer (16MBytes) of the decoder, for P6, P7, and P8 has a
direct connection to the DDR3 memory of the board from the
AXI HPO port of the Zyngq.

Frames/sec
Stimuli Format | PI P2 P3 | P4 | P5 P6 | P7 | P8
foreman QCIF 12 12 | 137 | 26 | 116 | 194 | 198 | 643
bus CIF 27 | 28 | 32 | 68| 284 | 37 | 40 | 148
costguard CIF 2.89 3 33 167|288 | 53 53 | 164
container CIF 53 5.1 54 1711292 8 | 71 | 118
football CIF 222 2.1 26 | 81| 29 34 | 39 | 138
crew 4CIF 104 | 1.02 | 1.1 |19 ] 73 14 14 | 28
matrix 480p 13 1.2 1.3 | 2.1 | 8.68 | 23 21 34

Table 3: Frames per seconds for different partitioning config-
urations.
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Fig. 4: Speed-up and output throughput in Mbit/s of the de-
coder given the partitioning configuration and input stimuli.

Table 3 reports the frame per second obtained by the
decoder for the different partition configuration running the
eight input stimuli. The stimuli samples has low, medium,
and high motion and coding complexity. In addition, these
samples are commonly used among researchers apart from
the matrix stimuli which has been encoded by the authors.
The performance of P1 and P2 (even with the parser on the
PL) are among the lowest in our experiment. This due to the
processing power of the ARM core and number of actors that
needs to be executed on the single core. The performance
of the decoder is gradually increasing for all input stimuli as
more actors migrates from the PS to PL.

Furthermore, Fig. 4a reports the speed-up by partition and
input stimuli. We observe that P1, P2, and P3 have relatively
the same performance. Once the idct2d network migrates to
PL, the speed-up is doubled. Input stimuli such as the foot-
ball benefit the most as it uses only Intra frames. Once the
motion migrates to the PL the speed-up drastically increases
by a factor of 10 and more for P5, P6 and P7 compared to
P1. Partition P6 and P7 have similar performance. The parser
network of the P7 partition is split between the PS and the
PL. A serialize actor that transforms bytes into bits and the
entropy decoding actor is located in PS, the macroblock ex-
pansion, the motion vectors, and motion vector reconstruc-
tion parsing actors are located in the PL. All the other actors
of P7 are partitioned as defined in Table 1. P6 is faster for
container and matrix input stimuli because of the PS parti-
tion in P7 schedules more data transmission than executing
the entropy parser actor. This effect can be observer for those
partitions on Fig. 4b which represents the output throughput
of the decoder in Mbit/s. For P6 vs P7, it can be concluded
that the handling of the communication by the PS slows down
the execution of the actors on the ARM and limits the input
throughput of the PL. Finally, the P8 has the highest speed-up
and output throughput than the other partitioning configura-
tions as all networks executes in parallel in the FPGA.

5. CONCLUSION

The paper presents a compiler infrastructure of dataflow pro-
grams for heterogeneous platforms such as the Zynq. It of-
fers to its user the possibility to partition dataflow networks
into different processing units without the need of adapting
the original behavioral description to each targeted execu-
tion component as required by other methodologies or design
flows. The implementation of complex signal processing ap-
plications on MPSoCs is greatly simplified by taking away
the hurdles of coding low-level drivers, peripheral intercon-
nection and HDL code for FPGAs. We demonstrated that our
compiler can partition a dataflow network to varied hardware
with heterogeneous communications channels. Furthermore,
our tests revealed that using this compiler we can accelerate
by large factors a design once the actors can be executed on
both the processing system and in the programmable logic.
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