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ABSTRACT
Belief Propagation (BP) decoding provides soft outputs and
features high-level parallelism. In this paper, we propose an
optimized software BP decoder for polar codes on graphics
processing units (GPUs). A full-parallel decoding architec-
ture for codes with length n ≤ 2048 is presented to simul-
taneously update n/2 processing elements (PEs) within each
stage and achieve high on-chip memory utilization by using
8-bit quantization. And, for codes with length n > 2048, a
partial-parallel decoding architecture is proposed to partly up-
date PEs of each stage in parallel and coalesced global mem-
ory accesses are performed. Experimental results show that,
with incorporation of the G-matrix based early termination
criterion, more than 1 Gbps throughput for codes n ≤ 1024
can be achieved on NVIDIA TITAN Xp at 5 dB while the
decoding latency is less than 1 ms. Compared with the state-
of-the-art works, the proposed decoder achieves throughput
speedups from 2.59x to 131x and provides good tradeoff be-
tween error performance and throughput.

Index Terms— Polar code, CUDA, SIMT, parallel de-
coding, GPU

1. INTRODUCTION

Polar codes, originally introduced by Arikan [1], are the
first family of theoretically capacity-achieving codes and
are regarded as a significant breakthrough in coding the-
ory. Successive-Cancellation (SC) decoding and Belief-
Propagation (BP) decoding are two popular decoding al-
gorithms for polar codes. SC decoding features low com-
putational complexity and memory consumption, but per-
forms worse in terms of error-correction capability at short
to moderate code lengths. Based on SC decoding, SC list
(SCL) decoding aided by Cyclic Redundancy Check (CR-
C) [2] is proposed to enhance error-correction performance
at the expense of increased complexity. However, the type
of SC-based decoding approaches characterizes serial mes-
sage updating and thus suffers long decoding latency and low
decoding throughput.

The work was supported by the National Natural Science Foundation of
China (61871009).

Alternatively, the BP decoding algorithm possesses intrin-
sic parallelism and can be efficiently implemented on the tar-
gets with highly parallel resources. And, BP decoding pro-
vides soft outputs which are necessary for iterative detection
and decoding [3]. However, the iterative BP decoder requires
large memory and high computation complexity. To solve
or alleviate the issues, researchers have proposed some sim-
plified approaches. The XJ-BP decoder [4] utilized differ-
ent characteristics of the constituent codes in the encoding
graph to avoid unnecessary computations within each itera-
tion. In [5], subfactor-graphs convergence reached at earlier
stages are considered to reduce the computation complexi-
ty. To reduce both memory and computation complexity, the
SCAN decoder [6] and its variant RCSC [3] are proposed.
However, these simplified approaches, similar with SC de-
coding, serialize the message updating process and also suf-
fer long decoding latency. On the other hand, to avoid unnec-
essary decoding iterations and then reduce the computation-
al complexity, researchers have presented early termination
criteria (ETC) such as G-matrix and minLLR based method-
s [7], worst of information bits (WIB) approach [8], frozen
bits based scheme [9]. Among these existing ETC, G-matrix
based method has the lowest average number of iterations.

Recently, some designers [5] [10–12] concentrated on
dedicated hardware BP decoders to offer low-power con-
sumption, low latency and high throughput. However, those
hardware solutions have limited flexibility and scalability
and require long development cycles. The new generation
communication systems such as Software Defined Radio and
Virtualized Communication Systems [13] require not only
high throughput performance but also high-level flexibility
and scalability. To meet those requirements, some researcher-
s [14–16] presented software BP decoders on graphics pro-
cessing units (GPU). In this work, we present efficient designs
of polar BP decoding architectures on GPU to further improve
the throughput and latency performance.

The main contribution of this work is as follows: (1) Two
effective mapping strategies based on code lengths are pro-
posed to not only reduce the decoding latency but also at-
tain high-level resource utilization; (2) Full shared and global
memory efficiency is achieved by adopting 8-bit quantization.
In addition, the asynchronous data transfer technique is uti-
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lized to solve the unbalanced workloads among the GPU’s
Streaming Multiprocessors (SMs) and hide the data transfer
latency. Compared with [15] at the same BER 10−5, the
throughput speedup reaches up to 70.9 times but at the cost
of 0.9 dB coding gain loss, which indicates that the proposed
decoder provides effective tradeoff between throughput and
error performance.

2. POLAR CODES AND BP DECODING
ALGORITHM

2.1. Polar codes

Polar codes are constructed on the basis of the channel polar-
ization phenomenon. Channel polarization can be represented
by a generator matrix G = F⊗m, where F⊗m is the m-th Kro-

necker power of F =

[
1 0
1 1

]
and m = log2n. Besides, the

encoding process can be indicated by matrix multiplication
x = uG, where u = [u1, u2, . . . , un] is the n-bit message vec-
tor and x = [x1, x2, . . . , xn] is the codeword. For an (n, k)
polar code, the n positions of u are grouped into two subsets
(A and Ac) according to their corresponding channel reliabil-
ity. The information set A contains k positions of u over the k
most reliable channels, which are assigned to carry informa-
tion bits. And, the remaining (n− k) positions constitute the
frozen set Ac since the bits at these positions are usually set to
0. The encoding process or matrix multiplication can be also
represented by a factor graph, in which m stages are included
and each stage includes n/2 XOR operations. The encoding
graph of an (8, 4) polar code is illustrated in Fig. 1(a).

2.2. BP decoding with G-matrix based ETC

BP decoding is an iterative message-passing algorithm over
the encoding factor graph of polar codes shown in Fig. 1(a).
For an (n, k) polar code, the factor graph has m stages and
each stage includes n/2 basic processing elements (PEs).
Each node within one PE (see Fig. 1(b)) is associated with
two categories of log-likelihood ratio (LLR) messages: left-
to-right message R

(t)
i,j and right-to-left message L

(t)
i,j , where

1 ≤ i ≤ n, 1 ≤ j ≤ m and t denotes the iteration number.
According to the round-trip schedule, the message L(t)

i,j is up-

dated from stage m to 1 and then R
(t)
i,j is updated from stage 1

to stage m. For the scaled min-sum (SMS) BP algorithm [7],
message updating within each PE is as follows:

L
(t)
i,j = α · f(L(t)

i,j+1, R
(t−1)
i+2m−j ,j + L

(t)
i+2m−j ,j+1) (1)

L
(t)
i+2m−j ,j = α · f(L(t)

i,j+1, R
(t−1)
i,j ) + L

(t)
i+2m−j ,j+1 (2)

R
(t)
i,j+1 = α · f(R(t)

i,j , R
(t)
i+2m−j ,j + L

(t)
i+2m−j ,j+1) (3)

R
(t)
i+2m−j ,j+1 = α · f(R(t)

i,j , L
(t)
i,j+1) +R

(t)
i+2m−j ,j (4)

where α is the scaled parameter (α is 0.9375 [7]) and
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Fig. 1. (a) Encoding factor graph of an (8, 4) polar code (1 ≤
j ≤ m); (b) General processing element. A = {4, 6, 7, 8}

f(a, b) = sign(a) · sign(b) · min(|a|, |b|). Let y =
[y1, y2, . . . , yn] be the received message vector over AWGN
channel with BPSK modulation. The element L(1)

i,m+1 is ini-

tialized by ln P (yi|xi=0)
P (yi|xi=1) . R(0)

i,1 is initialized by +∞ if i ∈ Ac.
The remaining elements are initialized by 0.

Let û = [û1, û2, . . . , ûn] and x̂ = [x̂1, x̂2, . . . , x̂n] be the
hard decision of u and x, respectively. After each iteration,
ûi is updated by (L

(t)
i,1 + R

(0)
i,1 ) > 0?0 : 1 and x̂i is updated

by (L
(0)
i,m+1 + R

(t)
i,m+1) > 0?0 : 1. If ûG = x̂ or t reaches

up to the maximum iteration number (Imax), the decoder will
output û as the decoding result.

3. OPTIMIZED GPU-BASED BP DECODER FOR
POLAR CODES

3.1. Full-parallel BP (FP-BP) decoding architecture for
codes n ≤ 2048

1) On-chip shared memory allocation and accesses. Since the
messages L

(t)
i,j and R

(t)
i,j between adjacent stages are reused

during the decoding procedure, we store those messages on
the limited on-chip shared memory to achieve high memo-
ry throughput for short code lengths (n ≤ 2048). For BP
decoding, storing the messages L

(t)
i,j and R

(t)
i,j of one code-

word requires 2n(m + 1) memory elements. To save shared
memory, 8-bit data unit (char) is adopted to represent a mes-
sage element. Thus, 104KB shared memory are needed for
an n = 4096 polar code, while the maximum shared memo-
ry size is 96KB per SM on a GPU. So, the proposed FP-BP
decoder supports the codes with n ≤ 2048.

Shared memory can work on two modes: 4-byte or 8-byte
bandwidth granularity after Fermi architecture. Each SM has
32 banks and each bank is composed of multiple 4-byte or 8-
byte memory segments. Avoiding bank conflicts is the main
concern of shared memory usage. It will result in bank con-
flicts that different threads within the same warp access dif-
ferent memory segments of the same bank. Note that there
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(a) Shared memory accesses during stage m

(b) Shared memory accesses during stage m-1

(c) Shared memory accesses during stage m-4

Fig. 2. Shared memory access characteristics for stages m−4,
m−1 and m. T1 ∼ T32 represent 32 threads in the same warp.
One grey/white block represents 1 byte.

is no bank conflict of the case that several threads within the
same warp access different bytes of the same memory seg-
ment. We can see that the encoding graph of polar codes
in Fig. 1(a) is similar to the butterfly graph of Fast Fourier
Transform (FFT). In [17], bank conflicts occur during the last
5 layers of the radix-2 butterfly graph when the banks work
on 4-byte granularity and each message element is represent-
ed by 4 bytes. Contrary to [17], we use 8-byte mode and each
LLR message element is represented by 1 byte (8 bits). The
shared memory accesses (stages m− 4, m− 1 and m) in this
work are illustrated in Fig. 2. Since the data accessed by 32
threads of a warp are 64 bytes, 8 banks are enough to store
them and no bank conflict occurs.

2) Mapping strategy of the threads. Considering the par-
allel characteristics of the BP decoding procedure, we assign
one thread block with n/2 threads to one polar codeword and
the n/2 threads are mapped to n/2 PEs within the same stage.
Thus, the n/2 PEs in each stage are simultaneously instan-
tiated during the iterative decoding. The number of active
blocks per SM (Nasm) is mainly determined by the available
shared memory per SM (Msm in KB) and the shared mem-
ory size needed by each thread block (Mb = 2n(m + 1) in
bytes). Here, Nasm is given by ⌈Msm×1024

Mb
⌉ = ⌈Msm×1024

2n(m+1) ⌉
(n ≤ 2048) (⌈x⌉ indicates the largest integer less than or e-
qual to x). And, the maximum number of registers per thread
is set to ⌈Mrg×1024×2

Nasm×n ⌉, where Mrg is the register size per SM
(64KB in general). To reduce the decoding latency and keep
the on-chip resource utilization in high level, the total num-
ber of codewords processed in parallel (Nb) per asynchronous
stream is Nasm × Nsm, where Nsm denotes the number of
SMs on the selected GPU.

3.2. Partial-parallel BP (PP-BP) decoding architecture
for codes n > 2048

1) Global memory accesses. For codes with n > 2048, the
messages L

(t)
i,j and R

(t)
i,j are stored on global memory since

the shared memory is not enough. When global memory is
adopted, coalesced memory access should be used to achieve

full global memory efficiency. During stages 1 to m − 5, 32
threads of a warp access contiguous global memory addresses
and coalesced global accesses can be guaranteed. Note that
threads in a warp do not access contiguous global memory
from stage m− 4 to m. Since the cache line size (128 bytes)
is twice the area of data addresses (64 bytes) accessed by the
32 threads in a warp, all the message data for one warp can
be still cached in Level 1 (L1) cache memory. In addition, for
each memory transaction, all data required by two adjacent
warps will be cached in the same cache line, which is likely
to improve the memory efficiency.

2) Mapping strategy of the threads. For polar codes with
length n > 2048, similar to the FP-BP decoding architecture,
n/2 PEs within each stage can be also processed in parallel
to reduce the decoding latency. Considering the limited on-
chip registers (64 KB per SM), we also assign one block to
one codeword but the number of threads per block is set to
1024. Therefore, only 1024 PEs belonging to one stage are
simultaneously processed and all PEs from the same stage
are partially updated. The maximum number of registers per
thread is 32 to fully utilize the on-chip registers, and thus one
SM activates two thread blocks. The total number of code-
words processed in parallel (Nb) per asynchronous stream is
2×Nsm.

3.3. Asynchronous data transfer

Both proposed decoding architectures map one thread block
to one codeword. Due to the ETC adoption, the number of de-
coding iterations varies with the codewords or thread block-
s. Thus, thread blocks simultaneously launched on the GPU
have different execution time (the blocks with small iteration
numbers will finish before the other blocks). The different
execution time among the launched thread blocks will result
in serious workload unbalance among the SMs and the re-
source utilization will be lowered accordingly. In this work,
we adopt the asynchronous data transfer mode to not only
balance the SMs workloads through overlapping the kernel-
s’ executions between two adjacent streams but also hide the
data transfer latency between host and device.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

The experimental platform is mainly composed of Intel i7-
8700K running at 3.7GHz and NVIDIA GTX TITAN Xp
(Pascal architecture, 1405MHz, 30 SMs, 3849 cores, 12G-
B global memory). The proposed software BP decoder is
compiled by CUDA Toolkit 9.2 and Visual Studio 2013 on
windows 7 x64 system. Fig. 3 shows the BER performance
and the average number of iterations of the proposed GPU-
based decoder with adoption of the G-matrix based ETC and
round-trip schedule (Imax = 40).

For the FP-BP decoder, to fully utilize on-chip registers
and shared memory according to Section 3.1, the maximum
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Fig. 3. BER performance and average number of iterations of
the proposed decoders over different Eb/No values.
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Fig. 4. Throughput performance of the proposed decoders
over different Eb/No values.

registers per thread are set to 24, 28, 32, 32 and the thread
blocks per stream are 630, 270, 120, and 60 for code length-
s 256, 512, 1024, and 2048. For the PP-BP decoder, the
thread blocks per stream are 60 and the maximum registers
per thread are 32. The number of asynchronous streams is
set to 5 for all codes. The decoding process contains the da-
ta transfer from host to device, iterative decoding, G matrix-
based ETC procedure, and the data transfer from device to
host. Fig. 4 and Fig. 5 summarize the throughput and la-
tency of the proposed decoders over different Eb/No values,
respectively. For codes with length n ≤ 1024, the FP-BP de-
coder achieves more than 1 Gbps throughput and less than 1
ms latency at 5 dB.

Table 1 gives the decoding throughput comparison with
[14] at 25 iterations and [15] at 50 iterations. For fair compar-
ison, we adopt the metric named TDNC (Throughput under
Normalized Decoding Cost, Mbps per SM per MHz) present-
ed in [18]. The throughput comparison with [14] is still con-
ducted in this work to comprehensively evaluate the proposed
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Fig. 5. Latency performance of the proposed decoders over
different Eb/No values.

Table 1. Throughput comparison with related works

N
Eb/N0 Related works Ours Speed

(dB) Ref. TNDC TNDC up
256

4.0 [14]

1.837 38.0 20.7
512 0.911 31.2 34.2
1024 0.371 23.8 64.3
2048 0.129 16.9 131

4096

2.0

[15]

0.23 2.43 10.7
3.0 1.045 3.44 3.29
4.0 1.545 4.010 2.59
5.0 1.545 4.415 2.86

decoder, even though we have difficulty reproducing the er-
ror performance shown in [14]. Under the same BER perfor-
mance such as 10−5, the proposed BP decoder achieves about
70.9 times throughput speedup than [15] but suffers about 0.9
dB coding gain loss due to the combination of SCL and BP
decoding in [15].

5. CONCLUSION

This paper presents an FP-BP decoding architecture for codes
n ≤ 2048 and a PP-BP decoding architecture for codes n >
2048 with efficient memory allocation and mapping strate-
gies. To achieve high resource utilization, 8-bit quantization
and the asynchronous data transfer mode are adopted. Com-
pared with the related works, much higher throughput can be
achieved, especially for short codes. For codes with length
n ≤ 1024, the proposed TITAN Xp decoder achieves above 1
Gbps throughput and less than 1 ms latency by using the G-
matrix based ETC. The presented GPU-based decoder can be
used as a flexible channel decoding module in the new gener-
ation communication systems.
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