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ABSTRACT

The conversion of an algorithm to fixed-point arithmetic

is commonly achieved with a large and fixed-number of

simulations. Nevertheless, when simulating a fixed and ar-

bitrary large number of samples, no confidence information

is given on the characterization, and this method is often

time-inefficient. To overcome this limitation, we propose

a new method for noise evaluation. The error induced by

fixed-point coding is statistically characterized to compute

the noise power with an adaptive and reduced number of

simulations. From user-defined confidence requirements, the

proposed method computes the minimal number of simu-

lations to obtain a confidence interval of the noise power.

Experiments on varied signal-processing elementary blocks

show that the proposed method requires on average the sim-

ulation of only 0.04% of the simulation set required by State

of the Art techniques to estimate the noise power of a 64th

order FIR filter with a relative error less than 0.01%.

Index Terms— Fixed-point, Statistics, Error, Noise Power,

Signal Processing

1. INTRODUCTION

The competition to design faster, cheaper and more energy-

efficient electronic systems is becoming not only economical

but also an urging answer in the need to save the available en-

ergy resources. According to the Semiconductor Industry As-

sociation and Semiconductor Research Corporation, the total

energy required by computing systems will exceed the esti-

mated world’s energy production by 2040, if no significant

improvement is obtained in terms of energy-aware comput-

ing systems [1]. In this context, approximate computing is an

active field of research that trades-off the output quality of a

system for its energy consumption. Approximate computing

benefits from the error resilience of applications in signal, im-

age or video processing and artificial intelligence fields. Ap-

proximations can be applied at three different levels: at the

hardware, computation and/or data levels. When applying an

approximation at the data level, the volume of data to process

can be reduced, and/or the format to encode the data modified.
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For instance, fixed-point coding offers efficient arithmetic

operators in terms of hardware resources, latency and en-

ergy. Fixed-point arithmetic becomes inevitable for ultra-low

power system for which data precision is a way to reduce the

energy consumption. In the fixed-point conversion process,

the more complex task corresponds to the optimization of the

word-length of each data, which is known to be a NP-hard

combinatorial problem [2]. The word-length optimization

process requires numerous iterations and at each iteration, the

error induced by the finite precision has to be characterized

and its impact on the output Quality of Service (QoS) has to

be measured. Classically, instead of measuring the impact of

the finite precision on the output QoS, an intermediate metric

is used [3]. In the rest of the paper, the intermediate metric

used is the quantization noise power, which measures the loss

of accuracy due to finite precision.

The error induced by fixed-point coding is generally eval-

uated by measuring the loss of QoS between the algorithm

implemented in infinite precision and in finite precision. The

error can be measured with two types of approaches: 1) An-

alytical methods [4–8] have been proposed to avoid time-

consuming simulations, by mathematically expressing error

statistics. The system in fixed-point coding is then replaced

by the system in infinite precision to which is added a noise

b characterized by statistical parameters. Nevertheless, ana-

lytical techniques are complex, hard to automate and cannot

be applied to systems with un-smooth operators, i.e. non-

continuous operators. 2) Functional simulation techniques

simulate the application using infinite and finite precision,

and compute the Peak Signal-to-Noise Ratio in both cases

at the output of the system. Given the obtained results, the

noise power due to the considered data formats is obtained.

This later method is widely employed since it is not limited

by the applicability of analytical techniques. Nevertheless,

to mimic the finite precision effects, fixed-point coding has

to be emulated. Several commercial high-level tools to de-

sign digital signal processing applications can be used to em-

ulate fixed-point coding, as CoCentric (Synopsis) [9], or C++

classes proposed in SystemC [10, 11]. SystemC fixed-point

data-types are particularly slow to simulate since they can be

two to three orders of magnitude slower than the execution

of floating-point data-types from the Arithmetic-Logic Unit

(ALU). In the rest of the article, the simulation of fixed-point
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variables using SystemC data-types is considered. When us-

ing simulation-based techniques, the noise power is generally

computed by simulating an arbitrary, and large, number of

random inputs [12]. However, the quality of the estimated

statistics is not evaluated, and this method can be ineffective

in terms of simulation time. Sedano et al. [13] proposed, sim-

ilarly as our approach, to use inferential statistics to infer the

number of inputs to simulate. They derived that for a noise

constraint of 10−k, 10k+1 input points were required for a

fair evaluation of the noise power. In our approach, a differ-

ent expression is derived for the number of input points.

We propose an efficient methodology using inferential

statistics to determine a reduced number of simulations to

compute an accurate enough estimation of the power of

the noise induced by fixed-point conversion. The proposed

method iteratively adapts the number of samples to simulate

depending on accuracy and confidence constraints. Our ap-

proach exploits the statistical properties of the approximation

error. The number of needed simulations and the character-

ization time are drastically reduced compared to [13]. This

method is demonstrated on three signal processing use-cases

using varied accuracy and confidence constraints.

The remainder of this paper is organized as follows: Sec-

tion 2 details the proposed estimation method for the noise

power. Section 3 presents the experimental setup and the ob-

tained results in terms of number of simulated samples.

2. ESTIMATION OF THE NOISE POWER AT THE
OUTPUT OF AN APPLICATION

2.1. Motivations

The noise power induced by finite precision at the output of an

application can be expressed as the second order moment of

the random variable ex, where ex represents the error distance

and is expressed as:

ex = |xQ − x∞| (1)

where xQ and x∞ are the variable x expressed in finite and

infinite precision, respectively. The impact of finite precision

may be induced by custom floating-point [14] or fixed-point

coding. In the following, only fixed-point coding will be con-

sidered.

Usually, to compute the noise power P induced by fixed-

point conversion using simulations, an arbitrary large number

of samples NSamples is taken. In the literature, NSamples ranges

from 105 [12] to 1012 [15]. For determining the noise power

P induced by finite precision, two different versions of the ap-

plication are simulated as presented in Figure 1. The distance

ex between the output of the application with infinite preci-

sion x∞ and the output of the application with finite precision

xQ is measured and squared for each simulated sample. The

expected value of these distances is then computed to obtain

P . The slow software simulation of fixed-point data-types as

well as the high number of samples to simulate makes gener-

ally fixed-point conversion a long and tedious task. While a

lot of work has been done to propose more efficient and faster

data-types, we show that a fixed and large number of samples

to simulate is inefficient and that number can drastically be

reduced to speed up the exploration.

Fig. 1: Simulation-based determination of the noise power P

The noise power P is a statistical parameter expressed as

in Equation 2 and can be estimated using inferential statistics.

The noise power is computed by averaging all the e2x,i values

with i ∈ I, where I represents the input set.

P = E[e2x] ∀ x ∈ I (2)

Inferential statistics [16] aim at predicting the behavior of

a large population I using a subset of this population. This

statistical analysis is particularly interesting in the case of

large simulation set, where the exhaustive characterization of

the error and of the noise power is not economically viable

since not in line with time to market constraints. Using infer-

ential statistics, the input set is sampled to give an estimation

of an interval with an accuracy h and a probability p that the

real value is contained within the estimated confidence inter-

val, instead of simulating exhaustively all the possible inputs

x in I.

The objectives of the proposed method are: 1) to estimate

the noise power P induced by fixed-point conversion, more

efficiently, using a reduced but sufficient number of samples,

2) to provide the estimated error characteristics within a given

confidence constraint, which is normally not the case with a

fixed amount of samples. The proposed method computes the

minimal number of samples to simulate, to estimate the noise

power P according to (h, p), where h is the accuracy on the

estimation and p the probability that the estimated interval

contains the real value. NP represents the minimal number

of samples to estimate P according to (h, p).

2.2. Minimal number of samples to estimate P , NP

As expressed in Equation 2, the power of the noise induced

by finite precision at the output of an algorithm whose inputs

are in I can be expressed as:
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P =
1

N

∑

i∈I
e2x,i (3)

where e2x,i is the squared Error Distance of the ith stimuli

on a sample I of size N .

To estimate the real value of P , the empirical mean μe2x
, a

punctual estimator of the expected value of the squared error

distances P is used. That is to say, μe2x
is an estimation of

P = E[e2x] computed over a subset of I. μe2x
is used to com-

pute the theoretical number of samples NP to simulate to get

an estimation according to the constraints (h, p). To estimate

NP , the standard deviation of the squared error distances is

also required. The empirical mean μe2x
and the empirical stan-

dard deviation S̃2, a biased estimator of the standard deviation

σe, are computed over T ≤ N samples as:

μe2x
=

1

T

T∑

i=1

e2x,i (4)

S̃2 =
1

T

T∑

i=1

(e2x,i − μe2x
)2 (5)

The estimators μe2x
and S̃2 are associated to confidence

intervals ICμe2x
and ICσe2x

respectively, defined such that they

include μe2x
and σe2x

with a probability p. Then, according

to the Central Limit Theorem [16], since (y1, y2, ..., yT ) =
(e21, e

2
2, ..., e

2
T ) are belonging to the same probability set, are

independent and identically distributed, Equation 6 is veri-

fied if the number of samples NP is higher than 30. No as-

sumption has to be made on the distribution of the population.

In Equation 6, N (0, σe2x
) represents a gaussian distribution

whose mean is 0 and standard deviation is σe2x
.

√
NP (μe2x

− μe2x
)

law−−→ N (0, σe2x
) (6)

The confidence interval ICp
μe2x

is developed in Equation 7

and contains μe2x
with a probability p. The term aαμe2x

em-

bodies the accuracy on the estimation and is computed as in

Equation 8. zα(p) is given by the table of the standard normal

distribution given p, and α = 1− p. NP is the minimal num-

ber of samples to simulate to get an estimation respecting the

constraints (h, p).

ICp
μe2x

= [μe2x
− aαμe2x

;μe2x
+ aαμe2x

] (7)

aαμe2x

= zα(p) · S̃√
NP − 1

(8)

The desired accuracy h on the estimation of the noise

power impacts the number of samples to simulate as ex-

pressed in Equation 9. To get a desired accuracy of h, aαμe2x

must be less than or equal to h.

Nμe2x
>

z2α · S̃2

h2
(9)

Algorithm 1 presents the computation of NP with the

described method. The population of the squared error dis-

tances, on which inferential statistics are applied is the set

E = {e2x,i/i ∈ I}. To sample the population E , a random

sampling method is used. To converge towards the minimal

number of samples to simulate, a refreshment period T ≥ 30
is used. Every T samples, the punctual estimators μe2x

and

S̃2 are computed to estimate the number of simulations NP

to compute P with the confidence constraints (h, p).

Algorithm 1 Proposed Computation of NP

procedure COMPUTENP (E , h, p, T )

E ← ∅
n ← 0
repeat

(e2n, .., e
2
n+T ) ← sampling(E , T )

E ← E
⋃
(e2n, .., e

2
n+T )

μe2x
← computeMean(E, n+ T ) � Equation 4

S̃2 ← computeSD(E, n+ T, μe2x
) � Equation 5

NP ← computeN(S̃2, h) � Equation 9

n ← n+ T
until n ≥ NP

return NP

end procedure

3. EXPERIMENTAL STUDY

In this section, the proposed characterization method is evalu-

ated on several elementary blocks of signal processing appli-

cations. The convergence of the estimated intervals towards

the accurate value of P is demonstrated with a 64th order Fi-

nite Impulse Response (FIR) filter converted to 16-bit fixed-

point coding. Then, the approach is applied to two different

types of quantization. The proposed method does not depend

on the complexity of the implemented application but on the

distribution of the noise power. For the different elementary

blocks presented, the considered block is implemented in C++

both in floating-point and fixed-point using SystemC [10] dy-

namic data-types. The accuracy of estimation has been mea-

sured by computing the relative error between the mean es-

timated noise power, and the accurate noise power computed

over all the input samples in I. The size of the input set I is

set up to 105 as in [12]. The goal of the experimental study

is, according to different values of p, to compute the number

of simulations required to obtain an evaluation of the noise

power with a required accuracy h and confidence p.

3.1. Example of a FIR Filter

The conversion of a 64th order FIR filter is under considera-

tion. The proposed characterization method is presented with

p = 98%. Figure 2 represents the estimated confidence in-

tervals on the noise power and the relative error of estimation
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depending on the number of simulated points. The more sam-

ples are taken, the more accurate the estimation is since the

width of the estimated interval is reduced. The refreshment

period T has been set to 50 for the characterization done with

less than 550 points, and afterwards to 500. The proposed

characterization method estimates the noise power with a high

accuracy (h ≤ 2%) from 150 simulated points. To apply our

approach, the noise must be stationary. The delays of the 64

taps must contain relevant values. Thus, the noise can be an-

alyzed only when the system has reached a steady-state. The

approach can also be used on individual nodes, as long as the

noise power at the output of the node can be measured.

3.2. Number of points to simulate to obtain a given preci-
sion

Table 1 lists for different elementary blocks of signal

processing (FIR filter, quantization from floating-point to

8-bit fixed-point and quantization from 8-bit to 6-bit fixed-

point) the number of points to simulate (the maximum is

set to 105 [12]) to get an estimation for several constraints

(h, p). For each block, the proposed method has been tested

1000 times with the constraints (h, p), IC% and accuracy of

estimation respectively. Over the 1000 runs, ICExpe is the

probability that the estimated interval contains the real noise

power value and has been measured. The average number of

simulated samples is also indicated as NP .
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(a) Confidence intervals on the noise power P .
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(b) Relative error of estimation of the noise power P .

Fig. 2: Estimation of the noise power P for p = 98%.

Accuracy of estimation %
0.01 0.001

IC% NP ICExpe NP ICExpe

68 45 68.4 55 69.7

95 45 95 55.5 95.3

98 30 98.7 77.63 98.8
FIR(64)

99 55 99 93.8 98.8

68 65 68 474 69

95 145 94.5 1785.8 95.4

98 145 98.4 2973 99

Quantization
8-bit to 6-bit

99 205 99.2 3012 99.4

68 18 69.6 857.8 70.3

95 42.7 95.1 3253.6 95.3

98 39 98 5766 98.9

Quantization
float to 8-bit

99 54 99 5565 99.1

Table 1: NP for varied elementary blocks and (h, p).

If h = 0.01%, on average for the different probabilities p,

the FIR filter requires the simulation of 44 samples, the quan-

tization from 8-bit to 6-bit fixed-point 140 samples and the

quantization from floating-point to 8-bit fixed-point 38 sam-

ples. If h = 0.001%, on average, the FIR filter requires the

simulation of 70 samples, the quantization from 8-bit to 6-bit

fixed-point 2061 samples and the quantization from floating-

point to 8-bit fixed-point 3861 samples, which corresponds to

less than 4% of the whole input set (105). More points are

needed for the quantization since the noise follows a uniform

distribution.

The more the distribution of the noise power is centered

around the mean, the least points are needed. When con-

verting a massive algorithm to fixed-point, saving numerous

simulations can greatly reduce the implementation time. The

more an algorithm is massive, the more noise sources. The

overall noise tends to follow a gaussian distribution. Besides,

the speed of convergence strongly varies depending on the

considered signal processing block. An adaptive sample-size

method like the proposed one is thus more adapted to the mea-

surement of the noise power rather than naive exhaustive sim-

ulations. The proposed method can then be used to ease the

design space exploration of an application, but because of its

statistical nature, not to verify a safety critical application.

4. CONCLUSION

In this article, we proposed a new method for characterizing

the noise power of an application converted in fixed-point.

From user-defined confidence requirements, the number of

simulations required is determined by using statistical proper-

ties of the quantization error. This method is demonstrated for

the estimation of the noise power of various signal process-

ing elementary blocks. Validated by its accurate estimation

of the noise power, this experimental study has demonstrated

that the proposed method overcomes naive random simula-

tions with a fixed number of samples by drastically reducing

the amount of samples required for an accurate estimation,

saving time and resources.

1511



5. REFERENCES

[1] S. I. Association and S. R. Corporation, “Re-

booting the it revolution, a call for action,”

https://www.src.org/newsroom/rebooting-the-it- revolu-

tion.pdf, 2015.

[2] G. A. Constantinides and G. J. Woeginger, “The com-

plexity of multiple wordlength assignment,” Applied
mathematics letters, vol. 15, no. 2, pp. 137–140, 2002.

[3] D. Menard, R. Serizel, R. Rocher, and O. Sentieys, “Ac-

curacy constraint determination in fixed-point system

design,” EURASIP Journal on Embedded Systems, vol.

2008, p. 1, 2008.

[4] B. Liu, “Effect of finite word length on the accuracy of

digital filters–a review,” IEEE Transactions on Circuit
Theory, vol. 18, no. 6, pp. 670–677, 1971.

[5] R. E. Moore, “Interval arithmetic and automatic er-

ror analysis in digital computing,” Stanford Univ Calif

Applied Mathematics And Statistics Labs, Tech. Rep.,

1962.
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