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ABSTRACT

A novel approach to multi-microphone acoustic source lo-

calisation based on spiking neural networks is presented.

We demonstrate that a two microphone system connected

to a spiking neural network can be used to localise acoustic

sources based purely on inter microphone timing differences,

with no need for manually configured delay lines. A two

sensor example is provided which includes 1) a front end

which converts the acoustic signal to a series of spikes, 2) a

hidden layer of spiking neurons, 3) an output layer of spiking

neurons which represents the location of the acoustic source.

We present details on training the network, and evaluation of

its performance in quiet and noisy conditions. The system is

trained on two locations, and we show that the lateralisation

accuracy is 100% when presented with previously unseen

data in quiet conditions. We also demonstrate the network

generalises to modulation rates and background noise on

which it was not trained.

Index Terms— spiking neural networks, binaural lo-

calisation algorithms, acoustic source localisation, machine

learning

1. INTRODUCTION

Determining the location of a sound source is an important

skill that has evolved to be simultaneously accurate and en-

ergy efficient. Many species can localise sources using two

ears to an accuracy of just a few degrees [1]. Determining

the location of an acoustic source is also an essential element

of many digital signal processing (DSP) platforms. Acoustic

source localisation in DSP systems is used for a variety of pur-

poses including scene analysis and noise reduction. Acoustic

source localisation is often at the front end of DSP pipelines

and used to gate when other algorithms are activated. For

this reason it is desirable to design an acoustic localisation

system that can run continuously with minimal memory and

energy requirements. In this paper we investigate whether

bio-inspired spiking neural networks can be used to localise

acoustic sources.

Animals primarily use two cues to determine the location

of an acoustic source in the horizontal plane. The interau-

ral time difference (ITD) is the difference in arrival time of

sounds across the two ears, it is generated by the difference in

distance from each ear to the acoustic source. ITD sensitivity

in humans is dominated by low frequencies (/ 2 kHz). The

interaural level difference (ILD) is the difference in intensity

of sounds across the two ears, ILD sensitivity is dominated

by high frequencies (' 2 kHz). In this paper we demonstrate

the performance of a system designed to utilise low frequency

ITD cues.

A large number of binaural localisation algorithms have

been developed that rely on ITD and ILD cues, see Courtois

et al [2] for a review. Most methods consist of a front end that

roughly models the basilar membrane, and a computational

or statistical based backend. Computational approaches are

based on inverse HRTF filters, optimising cross correlation

lags, and other similar methods. Statistical approaches use

Bayseian estimates, perceptual models, ITD and ILD classi-

fiers, and other similar methods. These techniques perform

well in quiet conditions, but often fail in loud or reverber-

ant environments. Methods that are effective in challeng-

ing acoustic environments require large amounts of memory,

processing, or knowledge of the room acoustic parameters a-

priori [2]. There is a need for computationally efficient binau-

ral localisation algorithms that work in challenging acoustic

environments.

Recently, spiking neural network approaches have been

proposed as a potential mechanism for binaural localisation.

These networks are described as the third generation of neural

networks, and employ spiking neurons as the computational

unit, this allows the system to inherently encode spatiotempo-

ral information [3]. Spiking neural networks can be trained to

perform tasks by varying the weight of synaptic connections

between neurons. Spiking neural networks have been used

to perform acoustic localisation tasks. For example, Wall et

al (2007) [4] exploited the ITD cue by inserting delay lines

to imitate the Jeffress model [5]. Goodman & Brette (2010)

[6] exploited both ILD and ITD cues to train their system of

around 1 million neurons that manually included delay lines

and gains. Both these approaches showed good localisation

performance in quiet but did not report whether performance

generalised to conditions with background noise. Wall et al
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Fig. 1. System Architecture. Sound arrives at the two mi-

crophones. The Zilany model is used to generate 100 spiking

channels per microphone, these are concatenated in the merge

stage. The 200 channels are connected to the hidden layer of

256 neurons, which is then connected to the 200 neuron out-

put layer.

(2012) [7] expanded on previous studies by demonstrating

that a delay-line based ILD approach with topology based on

the lateral superior olive can generalise to accurately localise

sources in noise down to 0.1 dB SNR. The existing literature

utilised manually configured delay-lines to achieve ITD sen-

sitivity. However, delay line systems may not be the mech-

anism by which biological systems generate ITD sensitivity

[8]. We present a spiking neural network with no explicit

delay lines that accurately estimates the lateralisation of an

incoming sound source. We do not attempt to create an exact

model of the auditory system, but endeavour to mimic just a

few aspects of the biological system that may improve locali-

sation performance in noise.

In this article we present a system for acoustic binaural

localisation based purely on ITD cues. We do not attempt to

optimise the memory or energy requirements of the system,

but aim to establish whether spiking neural networks are a

suitable tool to perform acoustic localisation. For this reason

we start with the simplest localisation task of lateralisation

(determing if a signal came from the left or right). We eval-

uate the system performance for a range of SNRs and input

signals on which the system was not trained. The remainder

of the paper is arranged as follows. In section 2 the system ar-

chitecture, training, and evaluation is described. Experimen-

tal results and system performance are discussed in section 3.

Finally a brief conclusion is presented in section 4.

2. METHODS

This section describes the design and evaluation of the acous-

tic localisation system. The architecture of the system is de-

scribed in section 2.1. Training and stimuli are described in

section 2.2. System evaluation is described in section 2.3.

2.1. System Architecture

The system architecture is illustrated in figure 1. Sound waves

arrive at the two sensors from an acoustic source. The wave-

form arriving at each sensor has an ITD generated by the loca-

tion of the source. The acoustic waveforms are then converted

to a series of spikes using the Cochlea toolbox [9] which im-

plements the Zilany model [10], this model gives a realistic

approximation of auditory nerve activity given an acoustic in-

put. We parameterised the Zilany model to have 20 centre

frequencies between 125 and 1000 Hz. For each centre fre-

quency 3 high, 1 mid, and 1 low spontaneous rate neuron was

simulated, in total 100 neuron channels were simulated per

microphone. In this work we have used a software model,

for implementation an analog model of cochlea could be used

[11]. The spiking output from each microphone was concate-

nated to create a 200 neuron input to the spiking neural net-

work.

The 200 neurons from the input stage were fed to a

two layer spiking neural network of leaky integrate-and-fire

neurons. The first (hidden) layer contains 256 neurons, the

second (output) layer contains 200 neurons. The output of

the spiking network was 200 channels, each channel was

designed to correspond to an ITD. The neuron to ITD map-

ping increased monotonically from -2 ms through to +2 ms.

For example, neuron 50 corresponds to -1 ms, neuron 100

corresponds to 0 ms, and neuron 150 corresponds to +1 ms.

To estimate the ITD of the incoming signal, the output

spikes were accumulated into bins using a histogram ap-

proach. The ITD was estimated as the histogram bin with

the most counts. Figure 3 illustrates the output of a trained

network on unseen data. Each point on the central plot il-

lustrates when an output neuron fired, the histogram shows

the distribution of firing neurons over the 1.0 second example

segment.

2.2. Network Training

The spiking neural network was trained using the SuperSpike

software [12]. Audio was presented to the system to train the

network, and the synaptic weights were optimised to produce

the desired target output using symmetric feedback. The input

audio was 6 Hz amplitude modulated, band-pass noise (200 -

800 Hz). The same audio was applied to both microphones

and one channel had a known ITD applied. The target output

was a sequence of spikes that fired with greatest probability

at the associated ITD neuron, and with decreasing probabil-

ity for neurons further from the true ITD. The target spike

sequence was generated by setting the firing rate of each neu-

ron based on a gaussian centred at the true ITD with variance

of 20 neurons. Figure 2 shows the input and target data for

a 10 ms ITD (an exaggerated value for visualisation). The

input neurons 1-100 are from the left channel output of the

Zilany model, the 101-200 neurons are from the right channel

output of the Zilany model, the right channel neurons have
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Fig. 2. Input and target signals for training the spiking neu-

ral network (network stage in Fig 1). The upper plot shows

the input to the spiking network generated from audio with a

delay of 10 ms (exaggerated for visualisation), note the shift

between first and second 100 neurons. The lower plot shows

the target output with peak spiking rate at 10 ms.

been flipped so it is easier to observe the time delay. Note

that the top 100 neurons are roughly a delayed version of the

bottom 100 neurons, by 10 ms. The output neurons are most

densely firing at the neurons associated with the ITD of 10

ms, and there is decreasing firing rate at neurons further from

the specified ITD.

To train the network pairs of known input and output

spikes were presented to the optimisation software. Each

training pair consisted of 1.8 seconds of audio presented to

the system for 25 training blocks. 90 unique pairs of input

and output were presented to the system. The initial network

weights were set to 0.05, with a learning rate of 1e3, and with

no spurious spiking. In each training set the source location

randomly jumped between ±1 ms at the minima of the am-

plitude modulation. All training stimuli were applied to the

Zilany model at 70 dB SPL with no interfering noise.

2.3. Performance Evaluation

Once trained, the system was evaluated using audio on which

the network was not trained (new generation of noise for

acoustic signal, random initialisation of Zilany model, etc).

The novel input was presented to the system and the output

spikes were recorded. The distribution of the output spikes

as a factor of neuron were calculated using a histogram pro-

cedure with 20 bins. The estimated location of the source

was defined as the ITD associated with the largest histogram

bin. The location was determined as correct if it had the same

sign as the known input ITD, essentially judging if the system

correctly lateralised the source.

The system was evaluated in quiet and in noisy situa-

tions with different SNRs. Different SNRs were generated

by adding white noise with a bandwidth of 0-1000 Hz to the

acoustic source (amplitude modulated bandpass noise with

ITD applied). The noise added to each microphone was in-

dependent. A range of SNRs were tested from -60 to 40 dB in

steps of 20 dB. 20 realisations were computed for each SNR

and location (±1 ms), and the percentage of correct laterali-

sation estimates was calculated.

The ability of the system to generalise to unseen data was

tested by evaluating performance for previously unseen mod-

ulation rates. Sounds with modulation rates of 5, 6.4 (the

training rate), 7, 8 and 12.8 Hz were presented to the system

and the localisation performance was calculated.

3. RESULTS AND DISCUSSION

The system was trained as described in section 2. Figure 3

shows an example output from the network for a previously

unseen acoustic signal arriving with an ITD of -1 ms in noise

with an SNR of 10 dB. The central plot shows the spiking

activity per neuron as a function of time. The histogram indi-

cates that peak neural firing occurs at the neurons associated

with -1 ms, as indicated by the red line. In this example the

system has correctly identified the input ITD.

The spiking neural network was trained to discriminate

whether a sound was arriving at two microphones from the

left or the right with an ITD of 1 ms. The network was tested

on 20 previously unseen acoustic signals. When the audio

was presented in quiet (no additive noise) the lateralisation

accuracy was 100%.

The network was tested with previously unseen realisa-

tions of sounds arriving from the left or right with an ITD of

1 ms in noise. The signal was always presented at 70 dB SPL,

and the noise was varied to achieve the desired SNR levels.

The red line in figure 4 shows the performance of the net-

work as a function of SNR for an input signal with the same

modulation rate as the network was trained on. As the noise

level increased, the lateralisation accuracy decreased, but still

achieved over 80% accuracy at 0 dB SNR. The performance

vs SNR curve of the system mimics that of typical psycho-

metric function from psychoacoustic experiments [13], and

does not have a catastrophic failure when presented with pre-

viously unseen conditions.

The ability of the system to generalise to novel acoustic

sources was examined by modifying the modulation rate of

the input. The blue line in figure 4 illustrates the performance

per SNR for an 8 Hz amplitude-modulated signal. The perfor-

mance at low SNRs was worse than for the trained modulation

rate, but again the system did not completely fail. The inset

shows the performance at 20 dB SNR for a range of mod-

ulation rates. Generally the system was robust to data that
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Fig. 3. Localisation system output for previously unseen data (with an ITD of -1 ms) presented in noise with SNR of 10 dB.

Each black dot represents a neuron spike. The histogram on the right illustrates the frequency of spikes for each time range.

The red line indicates the ITD bin where the highest rate of spiking occurred.
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Fig. 4. Lateralisation performance as a function of SNR for

sources with a modulation rate of 6.4 Hz (solid red) and 8 Hz

(dashed blue). The system was trained using only data with a

6.4 Hz modulation rate. The inset shows the performance for

additional modulation rates evaluated at 20 dB SNR.
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Fig. 5. Total spike rate as a function of SNR. The number of

spikes at the output of the system is monotonically increasing

with SNR. The inset shows the total spike rate as a function

of system accuracy.

differed from what it was trained on. The system performed

well in noise that had not been used in training, and for mod-

ulation rates other than was used in training.

Figure 5 illustrates the total number of output spikes per

second for different SNRs. The spiking rate decreases with

decreasing SNR. This was unexpected as the acoustic input

level is higher for low SNRs (the signal was held constant at

70 dB SPL and the noise varied).

Assuming a fully connected network, this system would

require 51712 synaptic connections. Future work to reduce

the network size may include synaptic pruning stages, and

smaller hidden and output layers. The number of output neu-

rons was overspecified to support future work to generalise

the lateralisation experiment to a localisation task. Similarly

the size of the hidden layer may be optimised, a much smaller

hidden layer may achieve similar performance in this task.

4. CONCLUSION

A spiking neural network based binaural lateralisation sys-

tem is presented. The system architecture is described along

with methods for training the network. The system achieves

100% lateralisation accuracy in quiet. The system was found

to generalise to perform in noise, and to accurately lateralise

signals with modulation rates on which it was not trained. To

the best of this author’s knowledge, this is the first example

of a spiking neural network that can localise based purely on

ITDs with no pre-defined delay-lines, instead exploiting the

spatiotemporal properties of the spiking computational unit.
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