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ABSTRACT

Photonic neuromorphic hardware can provide significant per-
formance benefits for Deep Learning (DL) applications by
accelerating and reducing the energy requirements of DL
models. However, photonic neuromorphic architectures em-
ploy different activation elements than those traditionally
used in DL, slowing down the convergence of the training
process for such architectures. An initialization scheme that
can be used to efficiently train deep photonic networks that
employ quadratic sinusoidal activation functions is proposed
in this paper. The proposed initialization scheme can over-
come these limitations, leading to faster and more stable
training of deep photonic neural networks. The ability of the
proposed method to improve the convergence of the training
process is experimentally demonstrated using two different
DL architectures and two datasets.

Index Terms— Neuromorphic Hardware, Photonic Neu-
ral Networks, Sinusoidal Activations

1. INTRODUCTION

Deep Learning (DL) provided powerful methods capable of
achieving state-of-the-art performance on several difficult
problems [1]. However, training and deploying DL mod-
els requires powerful and specialized hardware. It is worth
noting that a significant part of the progress in DL has been
attributed to the wide availability of such hardware that can
be used for this task [1]. To this end, Graphical Processing
Units (GPUs) are usually used to improve the training and
inference speeds, as well as reduce the energy requirements,
both of which are critical for successfully deploying DL
models in large-scale applications. Apart from using gen-
eral purpose hardware accelerators, like GPUs, developing
neuromorphic hardware solutions, that directly implement
the network architectures in hardware, have been proposed
to further accelerate neural networks [2, 3, 4]. Even though
these solutions are not yet widely used, it has been success-

fully demonstrated that it is indeed possible to improve the
inference speed and reduce the energy requirements of deep
neural networks, hinting that neuromorphic hardware can
constitute an interesting alternative to the generic hardware
accelerators that are predominantly used.

The use of photonics for providing hardware implementa-
tions of neural networks is perhaps among the most promising
neuromorphic solutions [5], overcoming several limitations of
existing neuromorphic hardware by using optical processing
elements instead of purely eletrical ones. In neuromorphic
photonics the input to a neural network is represented using an
optical signal that is then appropriately manipulated through
hardware components in order to provide the functionality of
neural layers. The signal can propagate through the used op-
tical hardware with speeds near to the speed of light, while
the great bandwidth of optical systems allows for parallel pro-
cessing of enormous amounts of data, potentially outperform-
ing the currently used solutions by several orders of mag-
nitude [5]. The momentum of photons to drive low-energy
and ultra-fast processing engines has been already efficiently
exploited in the implementation of reservoir computing [6]
and all-passive optical Deep Neural Networks (DNNs) [7].
More recently, the employment of Photonic Integrated Cir-
cuits (PICs) for deploying integrated weighting banks moved
towards an integrated neural network with sinusoidal activa-
tion elements [8].

However, the use of neuromorphic hardware always
comes with limitations that are usually ignored when train-
ing neural networks that will be simulated instead of be-
ing actually implemented on hardware [9, 10]. Among the
most important ones is that the activation functions, that
are traditionally used in deep learning, cannot be precisely
implemented. To this end, several different combinations
of electrical and photonic elements have been proposed to
simulate the effect of non-linear activation functions. In this
work, the activation scheme proposed in [8] is consider, i.e.,
a Mach-Zehnder Modulator [11] is employed to electrically
modulate an optical signal according to the weighted optical
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output of a neuron. This configuration leads to the following
transfer function:

Pout = Pin sin
2(
π

2

VRF
Vπ

), (1)

where Pout is the output signal, Pin is the reference optical
signal to be modulated, Vπ is the voltage required for an ex-
act π phase shift and VRF is the input to the activation func-
tion. This configuration requires the use of photodetectors to
convert the optical output of a neuron back to an electrical
signal that is then used to modulate a reference optical signal.
Even though this solution involves electronics, it can operate
at high frequencies due to the use of Germanium-based pho-
todetectors [12].

Using highly non-linear activation functions, such as
the sigmoid function, can slow down (or even completely
halt) the training of deep neural networks [13], due to sev-
eral phenomena, including the vanishing of the input/back-
propagated signals. The activation function described in
(1) is significantly different from the activation functions
that are usually used in deep neural networks. Its behavior
is compared to the ReLU activation in Figure 1. Note the
periodic and highly non-linear behavior of the employed pho-
tonic activation compared to the regular ReLU. It has been
demonstrated that using variance preserving initialization
schemes can significantly improve the speed and stability of
the training process [14, 15], when similar non-linear activa-
tion functions were employed. However, it was established
that different activation functions require using different ini-
tialization schemes to ensure that the input signal will not
diminish and that the gradients will correctly back-propagate.
Failing to use an initialization scheme that is correctly de-
signed for the activation function at hand can stall the training
process or lead to sub-optimal results [15]. Therefore, even
though these photonic neuromorphic implementations can
significantly improve the inference speed, further advances
are required in the way that neural networks are designed and
trained in order to fully exploit the potential of such photonic
hardware.

The main contribution of this paper is the proposal of an
initialization scheme for deep neural networks that is adapted
to the quadratic sinusoidal function that is physically realized
by the photonic neuromorphic processor proposed in [8]. An
analytical expression for the optimal variance during initial-
ization, following the variance preserving assumption [14],
is derived. It is experimentally demonstrated, using two dif-
ferent datasets, that the proposed method can indeed signifi-
cantly improve the convergence of deep neural networks al-
lowing for training deep neural networks on photonic hard-
ware. This work is related to training neural networks for neu-
romorphic hardware [9, 10, 16, 17]. However, to the best of
our knowledge this is the first work that considers the implica-
tions arising from the use of different activation functions in
photonic neuromorphic hardware. Note that the proposed ap-
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Fig. 1: Comparing the quadratic sinusoidal photonic activa-
tion to the ReLU activation

proach can be used both for the ex-situ training of neuromor-
phic hardware, i.e., training using conventional hardware and
then deploying the network on the neuromorphic hardware,
as well as for the gradient descent-based in-situ training, i.e.,
training directly on the neuromorphic hardware.

The rest of the paper is structured as follows. First, the
proposed initialization scheme is analytically derived in Sec-
tion 2. Then, the experimental evaluation is provided in Sec-
tion 3, while conclusions are drawn in Section 4.

2. PROPOSED METHOD

A deep neural network is composed of multiple non-linear
processing layers, while each layer is composed of several
neurons. A neuron of the l-th layer receives its input, denoted
by a vector x(l−1) ∈ Rnl−1 , where nl−1 is the dimensionality
of the input, and then the input is multiplied with the synaptic
weights of the i-th neuron, denoted by w

(l)
i ∈ Rnl , and then

summed. This process is repeated for all the neurons of the
l-th layer leading to the activation vector ul ∈ Rnl

, where
nl is the number of neurons in the l-th layer, i.e., u(l) =

W(l)x(l−1) + b(l) ∈ Rnl , W(l) = [w(l)
, w

(l)
2 , . . . ,w

(l)
nl ] ∈

Rnl×nl−1 is the weight matrix of the l-th layer and b ∈ Rnl

is a vector containing the bias terms. The final output of the
neuron is obtained by applying a non-linear activation func-
tion f(·), i.e., x(l) = f(u(l)) ∈ Rnl . The terms activation
and output of a neuron are not consistently used in the lit-
erature. In this paper, the term activation is used to denote
the quantity u(l), i.e., the output of the neuron before apply-
ing the activation function, while the term output is used to
the denote the final output of a neuron u(l) after applying the
activation function f(·).

The transfer function of the activation element employed
in [8] can be simplified as:

(2)f(u) =

{
0, if u ≤ 0

sin2(π2u), if u > 0
,
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after considering the physical limitations of the components
(negative power can not be represented) and that the quantity
u can be appropriately scaled during the implementation (ac-
cording to the voltage Vπ required to achieve a phase shift of
π).

As discussed in [14], using a proper initialization scheme
before initiating the training process is of crucial importance.
The characteristics of the initialization process, that should
be used when photonic sinusoidal activation elements are em-
ployed, are derived in this paper following the hypothesis pro-
posed in [14], i.e., that the variance of the input and back-
propogated signals must be kept constant through the various
layers of the networks. This allows the information to ar-
rive to the output of the network, as well as, the gradients to
be effectively back-propagated, avoiding vanishing gradients
phenomena.

The weights of the l-th layer are initialized by drawing
from a random variable denoted by w (l), while the notations
u(l) and x (l) are used to refer to the random variables that
correspond to the outputs u

(l)
i and x

(l)
i of the l-th layer. We

assume that the elements of W(l) share the same distribution,
are mutually independent and have zero mean, i.e., E[w (l)] =
0. Furthermore, the elements in x(l) are also mutually in-
dependent and drawn from x (l), while it is assumed that the
variables w (l) and x (l) are independent. For the scope of this
analysis, the behavior of the employed activation function (for
positive inputs) is approximated using a first-order Taylor ex-
pansion around u0. Therefore, the activation function used for
calculating the variance of the distribution that will be used
for the initialization of the network is defined as:

(3)f̂(u) =

{
c1(u− u0) + c0, if u > 0

0, if u ≤ 0
.

where c1 = f ′(u0) = 1
2π sin(πu0) and c0 = f(u0) =

sin2( 12u0). The feed-forward case is examined. The variance
of the output of the l-th layer is calculated as:

(4)

V ar[u(l)] = V ar[u
(l)
k ]

= V ar[

nl−1∑
i=1

W
(l)
ki x

(l−1)
i ]

=

nl−1∑
i=1

V ar[w (l)]E[(x
(l−1)
i )2].

Assuming that w (l) is symmetric around zero and the bias
terms are initialized to 0, then it is easy to see thatE[u(l)] = 0
and u(l) is also symmetric around zero. By observing that
the activation function maps half of its values to 0 and using
a first-order Taylor series’s approximation for the other half,
then E[(x

(l−1)
i )2] can be calculated as:

(5)
E[(x

(l−1)
i )2] =

1

2
c21E[(u

(l−1)
i )2]

=
1

2
c21V ar[u

(l−1)].

Therefore, the variance for the l-th layer is calculated as:

(6)

V ar[u(l)] =
1

2
c21

nl−1∑
i=1

V ar[w (l)]V ar[u(l−1)]

=
c21
2
nl−1V ar[w

(l)]V ar[u(l−1)]

= V ar[x (0)]

l−1∏
i=1

c21
2
ni−1V ar[w

(i)],

by plugging (5) into (4). Note that x(0) corresponds to the
input of the neural network and n0 is the number of input
dimensions. To ensure that the variance is equal across all
the layers, the product that appears in (6) must be equal to 1.
This ensures that the variance will be kept constant across the
layers. Therefore, the weights of the l-th layer must be ap-
propriately initialized from a distribution with the following
variance:

(7)V ar[w (i)] =
2

c21ni−1
.

If a normal distribution is used for initializing the i-
th layer, then its standard deviation must be set to σ =
1
σ1

√
2

ni−1
. If a uniform distribution is used, then the weights

must be sampled from the interval [−α, α], where α =
1
σ1

√
6

ni−1
.

Similar analysis can be also used to derive the vari-
ance needed for successfully back-propagating the gradients
through the network. However, as also proposed in [15],
either of them can be used interchangeably in most of the
cases without significant differences in the performance. Fur-
thermore, note that the conducted analysis considers only
the case of fully connected layers. However, it is straight-
forward to adapt the initialization scheme to other types of
layers, e.g., convolutional layer, simply by correctly setting
ni−1 to the fan-in of each neuron, as proposed in [15]. In
the conducted experiments it is demonstrated that the pro-
posed method works equally well for both fully connected
and convolutional layers.

3. EXPERIMENTAL EVALUATION

The proposed initialization scheme was evaluated using two
image datasets, the MNIST and Fashion MNIST datasets [18],
as well as two different deep learning convolutional architec-
tures: a) a 4-layer network and b) a 6-layer network. The first
network is composed of two convolutional layers (3 × 3 ker-
nels) with 32 and 64 filters, followed by two fully connected
layers with 512 and 10 neurons respectively. Dropout with
rate 0.5 is used before and after the first fully connected layer.
Average pooling with kernel size 2 × 2 is used after each
convolutional layer (note that currently there is no method
proposed in the literature for implementing max pooling in
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Fig. 2: Learning curves for two different initialization
schemes (Xavier [14] and proposed) and two different ran-
dom distributions (uniform and normal).

photonic networks). The second network follows a similar
architecture, i.e., four convolutional layers with 32, 64, 128
and 256 filters (average pooling is used after the second and
the fourth layers) are used, while the fully connected layer is
composed of 1024 neurons. The cross entropy loss, together
with the softmax activation function, is used for training the
networks. Note that the softmax activation is only needed
during the training process and it can be removed during the
deployment. The initial weights were drawn from a uniform
distribution for all the conducted experiments, unless other-
wise stated. Finally, the activation function was approximated
around u0 = 1

4 , which consistently yielded the best results in
all the conducted experiments.

First, the proposed initialization scheme is compared to
the well-known Xavier initialization (as proposed in [14]) in
Figure 2. The stochastic gradient descent method (the learn-
ing rate was set to η = 0.1) with momenum of 0.9 was used
for these experiments. The proposed method leads to signif-
icantly faster convergence than the Xavier initialization re-
gardless the distribution used for drawing the weights.

Then, the improved behavior of the proposed initializa-
tion scheme was also confirmed in the experimental results
provided in Table 1 using the MNIST dataset and the first
neural network architecture. The Adam optimizer was used
for the conducted experiments [19]. The baseline (denoted by
“ReLU”) consists of a regular deep neural network with the
same architecture using the ReLU activation (and the appro-
priate initialization scheme [15]) instead of the photonic acti-
vation. The proposed combination of the employed photonic
activation and initialization scheme significantly improves the
performance over using the Xavier initialization. It also leads
to slightly improved performance over the baseline deep net-
work (which was a surprising result, given the periodic and
highly non-linear nature of the employed activation compared

Table 1: Evaluation using the MNIST dataset. The optimiza-
tion ran for 10 epochs (learning rate set to 0.001) with batch
size of 128.

Model train err. test err.
ReLU 0.49 0.79
Photonic + Xavier 0.59 1.00
Photonic + proposed 0.37 0.78

Table 2: Evaluation using the Fashion MNIST dataset. The
optimization ran for 20 iterations (learning rate set to 0.001)
with batch size of 128, followed by 20 additional iterations
(learning rate set to 0.0001).

Model Network train err. test err.
ReLU 4 layer 10.61 10.28
Photonic + Xavier 4 layer 12.62 12.28
Photonic + Proposed 4 layer 11.84 11.71
ReLU 6 layer 5.62 6.56
Photonic + Xavier 6 layer 6.83 7.44
Photonic + Proposed 6 layer 6.12 7.11

to the ReLU, hinting that such function can potentially have
a positive regularization effect). Similar conclusions can be
also drawn from the experiments conducted using the Fash-
ion MNIST dataset and both network architectures, where the
proposed initialization scheme also always improves both the
training and testing error over the Xavier initilization. Note
that the first model (4-layer network) was under-fitting the
data, while the second one (6-layer network) was more pow-
erful leading to better performance.

4. CONCLUSIONS

In this work, a variance preserving initialization scheme
that can be used to efficiently train deep photonic networks
that employ quadratic sinusoidal activation functions was
proposed. The proposed method allows for training deeper
neural networks for neuromorphic photonic hardware, that
can be used to significantly accelerate and reduce the en-
ergy requirements of Deep Learning (DL). The ability of the
proposed method to improve the convergence of the training
process was experimentally demonstrated using two different
DL architectures and two datasets. Apart from studying the
initialization schemes for deep photonic networks, several
interesting future work directions exist, e.g., imposing ad-
ditional constraints on the activations/weights to ensure the
stable behavior of the network on photonic hardware and de-
riving methods to directly adapt a trained neural network for
deployment on photonic hardware without training it from
scratch.
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[3] Giacomo Indiveri, Bernabé Linares-Barranco, Tara Ju-
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oudi, Diego Pérez-Galacho, Laurent Vivien, Charles
Baudot, Peter De Heyn, Joris Van Campenhout,
Delphine Marris-Morini, and Nikos Pleros, “O-
band energy-efficient broadcast-friendly interconnec-
tion scheme with sipho mach-zehnder modulator (mzm)
& arrayed waveguide grating router (awgr),” in Optical
Fiber Communication Conference, 2018, pp. Th1G–5.

[12] M Pantouvaki, SA Srinivasan, Y Ban, P De Heyn, P Ver-
heyen, G Lepage, H Chen, J De Coster, N Golshani,
S Balakrishnan, et al., “Active components for 50 gb/s
nrz-ook optical interconnects in a silicon photonics plat-
form,” Journal of Lightwave Technology, vol. 35, no. 4,
pp. 631–638, 2017.

[13] Xavier Glorot, Antoine Bordes, and Yoshua Bengio,
“Deep sparse rectifier neural networks,” in Proceedings
of the International Conference on Artificial Intelligence
and Statistics, 2011, pp. 315–323.

[14] Xavier Glorot and Yoshua Bengio, “Understanding the
difficulty of training deep feedforward neural networks,”
in Proceedings of the International Conference on Arti-
ficial Intelligence and Statistics, 2010, pp. 249–256.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in Pro-
ceedings of the IEEE International Conference on Com-
puter Vision, 2015, pp. 1026–1034.

[16] Mirko Prezioso, Farnood Merrikh-Bayat, BD Hoskins,
GC Adam, Konstantin K Likharev, and Dmitri B
Strukov, “Training and operation of an integrated neu-
romorphic network based on metal-oxide memristors,”
Nature, vol. 521, no. 7550, pp. 61, 2015.

[17] Steve K Esser, Rathinakumar Appuswamy, Paul
Merolla, John V Arthur, and Dharmendra S Modha,
“Backpropagation for energy-efficient neuromorphic
computing,” in Proceedings of the Advances in Neural
Information Processing Systems, 2015, pp. 1117–1125.

[18] Han Xiao, Kashif Rasul, and Roland Vollgraf, “Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms,” 2017.

[19] Diederik P Kingma and Jimmy Ba, “Adam: A
method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

1487


		2019-03-18T10:50:49-0500
	Preflight Ticket Signature




