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ABSTRACT

With 5G millimeter wave communications, the resulting radia-
tion reflects on most visible objects, creating rich multipath environ-
ments. The radiation is thus significantly shaped by the obstacles
it interacts with, carrying latent information regarding the relative
positions of the transmitter, the obstacles, and the mobile receiver.
Through a pre-estabilhed codebook of beamforming patterns trans-
mitted by a base station, the concept of beamformed fingerprints for
mobile devices’ outdoor positioning has been previously proposed.
In this paper, a tailored hierarchical convolutional neural network is
proposed to further leverage the structure in the aforementioned hid-
den information. Average errors of down to 3.3 meters are obtained
on a simulation environment based on realistic outdoor scenarios,
containing mostly non-line-of-sight positions, making it a very com-
petitive and promising alternative for outdoor positioning.

Index Terms— 5G, Beamforming, Deep Learning, mmWaves,
Outdoor Positioning.

1. INTRODUCTION AND BACKGROUND

With mmWaves, the propagation changes dramatically: the result-
ing radiation has severe path loss properties and reflects on most
visible obstacles [1]. To counteract the aforementioned character-
istics, beamforming (BF) is usually employed in systems contain-
ing multiple-input and multiple-output (MIMO) antennas, enabling
steerable and focused radiation patterns.

With that recent focus, new mmWave positioning systems were
proposed [2]. The achievable accuracy in certain conditions is re-
markable, having sub-meter precision in indoor [3] and ultra-dense
line-of-sight (LOS) outdoor scenarios [4]. Nevertheless, in order
to be broadly applicable for outdoor localization, a mmWave posi-
tioning system must also be able to accurately locate with devices
in non-line-of-sight (NLOS) locations. This requirement, allied to
non-linear propagation phenomena such as reflections and diffrac-
tions, poses serious challenges to any mmWave positioning method
directly based on the measured time and/or distance.

1.1. Related Work

The works developed in [5–9] address this concern, attempting to
locate devices in both LOS and NLOS situations. The method in [5]
applies compressed sensing on information gathered from static lis-
teners, while in [6] multiple access points are used to create a lo-
cation fingerprint database of received powers and angles-of-arrival
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(AoA). In [7], the authors use multiple BF transmissions and an iter-
ative algorithm to estimate the position and orientation of the device.
The same parameters are obtained in [8], through the estimation of
the AoA, time of arrival (ToA), and angle of departure (AoD), mak-
ing simultaneous use of LOS and NLOS transmissions.

However, the methods referred so far have a hard time comply-
ing with typical outdoor situations: [5] and [6] assume that each de-
vice is always in range of multiple static transceivers, while the other
two methods struggle with NLOS locations, requiring multiple trans-
mission paths reflecting in at least three different surfaces [7] or pre-
ferring to not disclose the performance results for those locations [8].
Finally, the method proposed in [9] overcomes the aforementioned
restrictions by creating a fingerprint database of uplink pilots trans-
mitted to a distributed massive MIMO base station (BS), and then
resolving the position using a Gaussian process regression, obtain-
ing a large root-mean-square-error (RMSE) value, around 35m.

For the 5G BSs, which are expected to be positioned in elevated
positions of urban scenarios, the majority of the obstacles will be
buildings, and thus mainly static for a significant amount of time. As
result, successive measurements of the received power delay profile
(PDP) at a given position are expected to remain comparable until a
significant change in the area occurs. Therefore, if a BS transmits
short pulses employing a sequence of directive BF patterns, so as
to cover all possible angles of transmission, each position covered
by the system will likely have a unique set of PDPs. In [10], we
proposed the use of that pattern, which we coined as beamformed
fingerprint, as a foundation for an accurate mmWave outdoor posi-
tioning method. In this paper, we design a new hierarchical convo-
lutional neural network (CNN [11]), tailored to the spatial properties
of the positioning problem, which significantly improves the ability
to decode the incoming data into a geolocation.

2. BEAMFORMED FINGERPRINT POSITIONING

A critical component of learnable fingerprint data is its consistency,
as it then allows the system to extract helpful information from ex-
pected patterns. Thus, an immutable BF codebook for the transmit-
ter must be selected, resulting in a fixed set of transmitted radiation
patterns. Furthermore, to obtain equivalent fingerprints, different tar-
get devices must employ comparable detection schemes. To comply
with both requirements, the system depicted in fig. 1 was originally
suggested in [10]. It operates in four distinct phases, as labeled in
the diagram, whose details are further described below.

Phase A: During this phase, a fixed codebook (CTx) is con-
sidered, containing BTx directive BF patterns. Before a position
estimate becomes possible, the BS must transmit a sequence of BTx

pulses. Assuming a BS with NS antennas, the frequency-domain
signal for the i-th transmitter BF at a mobile device with NR anten-
nas, y ∈ C, can be written as
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Fig. 1. Overall scheme of the system proposed in [10]. The mo-
bile device samples the received PDPs from radiation transmitted
through a fixed set of beamforming patterns, resulting in a unique
beamformed fingerprint that can then be translated into its position.

y = wTHf ix+wT z, (1)

where the superscript T denotes a matrix transpose, w ∈ CNR×1

corresponds to the (optional) beamforming at the receiver, H ∈
CNR×NS is the channel matrix, fi ∈ CNS×1 denotes the currently
selected transmitter beamforming, x ∈ C is the waveform to be
detected, and z ∈ CNR×1 represents noise. Since the transmitter
beamforming is codebook-based, it is important to state that fi ∈
CTx (CTx = {f1, . . . , fBTx}).

As the system transmits the sequence of beamformed pulses, it is
important to avoid losing information due to destructive interference.
As such, after the time allocated to the measurement of the desired
fingerprint data for a given pulse, a minor time interval (Tguard)
should be considered before the transmission of the following pulse,
to account for longer paths with multiple reflections.

Phase B: Given the consistent data requirement, a sampling rate
must be defined, and the receivers should be synchronized with the
BS transmissions. If the system is expecting beamforming at the re-
ceiver, a target array gain must also be established for all receivers.
In that case, the receivers would have to define their own BF code-
book, CRx, containing BRx elements (CRx = {w1, . . . ,wBRx}),
so as to search over all angles-of-arrival (AoA) with similar gain1.
With BF at the receiver, the device would have to sample each orig-
inal transmission BRx times, storing the maximum measured value
for each data point. The acquired data from the i-th transmitter BF,
di, can thus be written as

di[n] = max
j=1,...,BRx

yj(nT ), n = 0, 1, . . . , N − 1, (2)

where yj is the time-domain sampled data using the receiver beam-
forming wj , T is the sampling period, and N is the number of sam-
ples to gather per transmitter BF. It should be noted that the obtained
fingerprint data (d) has a negligible dependency on the mobile de-
vice orientation if the receiver BF codebook does cover all AoAs,
since it considers the maximum value among all used receiver BFs.

High quality data can be obtained with a small T and pulse du-
ration (< 100 ns). In such conditions, the received radiation is de-
tected in clusters, containing voids that are large enough to be reli-
ably detected [13]. The ability to distinguish these voids provides

1It should be noted that even though different mobile devices would likely
have different implementations of the receiver BF codebook, due to dissim-
ilar antenna arrays, a CNN trained with perturbations is usually resilient to
them [12]. If the ecosystem ends up containing particularly diverse devices,
it would be possible to train a separate CNN for each type of devices.

a meaningful shape to the resulting data, enhancing the learning ca-
pabilities of the system. As it was shown in [10], the position of
the acquired non-zero samples in the data contains nearly all the ex-
tractable information. Therefore, we proposed a binary detection of
the signal’s existence when acquiring the data, further reducing the
hardware requirements of the proposed system.

Phases C and D: After the required fingerprint data d is ob-
tained, the previously trained CNN can finally infer the device posi-
tion, which will the be relayed back to the mobile device. It should
be noted that each deployed BS will have their own dataset and,
therefore, their own CNN inference model. It should be noted that
while gathering a labeled dataset for each BS might seem like a con-
siderable effort, practical systems can always fall back to GPS in
order to effortlessly label their outdoor positioning samples.

3. HIERARCHICAL CNNS
The neural network is a circuit analogous to a biological brain, com-
prised of a number of basic elements called neurons that are stacked
in multiple fully connected layers. The vector containing the output
of the l-th layer of neurons nl can be written as

nl = a (Cl nl−1 + bl) , (3)

where Cl depicts the weight matrix, bl is the bias, and a is an acti-
vation function, a non-linear differentiable function. The first layer
(n0), also known as input layer, is fed in with the input data d, which
is a beamformed fingerprint in the context of this paper.

Due to the non-linear activation functions, a neural network
is a good candidate to learn the non-linear phenomena commonly
encountered in a mmWave transmission, such as reflections and
diffractions. To map the input fingerprint data to the target label, the
network is trained using a gradient-based algorithm which iteratively
updates the neurons’ learnable parameters. For the proposed system,
the neural network is trained to perform a regression, minimizing
the mean square error (MSE) to the data’s labeled position pd, i.e.,

p̂∗ = argmin
p̂

E
{(

p̂− pd

)T(
p̂− pd

)}
, (4)

where p̂∗, which is the output of the neural network’s last layer, de-
notes the estimated position given d. The usage of this loss function
can be interpreted as a minimization of the euclidean distance be-
tween the labeled position and its estimate. After being trained, the
network is able to provide estimates for new, unseen data.

Consider now the two indexing dimensions of the beamformed
fingerprint data samples, the time-domain sample number and the
transmitter BF index. If the sequence of BF indices corresponds to
a continuous sweep over the azimuth, it is possible to extract infor-
mation not only from the individual data points, but also from their
sequence along those two dimensions. With CNNs, the convolu-
tional layer is introduced, where the neural network can learn the
most effective set of short filters to apply on the received data, and
thus also extracting information from their sequence. With convolu-
tional layers, more than one feature can be learned from the previous
layer’s output, which can be seen as a higher-order abstraction. For
the l-th convolutional layer of neurons N, which is now a matrix, the
output of the f -th feature can be written as

Nf
l = a

(
D∑

d=1

(
Cf,d

l Nd
l−1

)
+ 1× bfl

)
, (5)

where D is the number of features in the previous layer, 1 is a bi-
dimensional matrix of ones, the bias bfl is now a single scalar, and
each Cf,d

l , now denoting a bi-dimensional filter, is a doubly block
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Fig. 2. Overview of the proposed hierarchical model, where the total area can be divided into |S| sub-areas, each with a dedicated CNN
regressor. A CNN classifier is used to select the most suitable regressor ŝ, which in turn yields the position estimate p̂. To enhance the
regressor precision, it is also fed with the output layer of the CNN classifier, which can be seen as a coarse estimate.

circulant matrix (which is a special case of a Toeplitz matrix). In this
case, the input layer (N0) is fed in with the beamformed fingerprint
data d. Due to its new structure, if Cf,d

l represents a filter with L1
rows andL2 columns, it only containsL1×L2 learnable parameters.
Although there is a different learnable filter for each pair of features
on two subsequent convolutional layers, the number of learnable pa-
rameters in a convolutional layer is significantly lower than in a fully
connected layer, for equally performing neural networks [11].

To further refine the learning mechanism, a hierarchical model
inspired by the work in [14] is proposed, as depicted in fig. 2.
For each BS, the covered area can be seen as a set of sub-areas S
(S = {s1, . . . , s|S|}). If each sub-area contains a dedicated CNN,
those |S| CNNs can specialize on their own data partition. As adja-
cent positions are very likely to contain similar data patterns, each
dedicated CNN will have fewer types of patterns to learn, thus facil-
itating the learning process.

The sub-areas can be seen as coarse positions and, as result,
identifying the sub-area s of a new data sample should be an ac-
cessible task. Thus, a separate CNN classifier is used to predict the
most likely ŝ, indicating which dedicated CNN should be used to
estimate the device location. As mentioned, the predicted ŝ can be
seen as a coarse position estimate and, therefore, the selected CNN
regressor is also fed in with the output layer of the CNN classifier, so
as to enhance its precision. To train the classifier, the cross-entropy
between prediction and ground truth is minimized, such as

p(̂s) = argmin
p(ŝi), i=1,...,|S|

E
{
−
∑
i

p(si|d) log(p(ŝi))
}
, (6)

where p(̂s) denotes the output vector of the classifier neural network,
containing the predicted probabilities p(ŝ = si) for a certain input
data d. After obtaining the classifier’s output, the most suitable ded-
icated CNN ŝ is selected by determining

ŝ = argmax
i=1,...,|S|

p(ŝ = si). (7)

As |S| grows, a trade-off is expected: the specialized CNNs will
have a smaller area to cover, while the accuracy for the CNN clas-
sifier decreases. Since the dedicated CNNs map their predictions
to the complete area, they might be able to recover from previous
classification errors, as long as it is a recurrent (and thus learnable)
mistake. On the other hand, non-recurrent misclassifications have a

significant penalty on the system, especially when training, where a
misclassified sample is tied to the training set for ŝ (with ŝ 6= si).
This can be seen as simultaneously adding noise to the training set
for ŝ, while depriving si of meaningful samples. The results in [14]
also reflect this trade-off, with hierarchical models outperforming
traditional CNNs unless there are too many data partitions.

The application of the hierarchical model is completely transpar-
ent to the mobile device. For the BS, while it might require some ad-
ditional computing resources, it is scalable in respect to the number
of area partitions: the predictions always require the same number
of operations (one coarse classification and one fine-grained regres-
sion), and the training time barely changes (it depends mainly on the
total number of training samples).

4. SIMULATIONS AND EXPERIMENTAL RESULTS

4.1. Evaluation Apparatus

To evaluate the proposed system accuracy, a dataset using mmWave
ray-tracing simulations in the New York University (NYU) area is
used, containing fingerprint data from 160801 different positions.
The propagation specifications in Table 1 were inherited from the
experimental measurements in [13] and, in [16], it was shown that
these ray-tracing simulations matched the aforementioned experi-
mental measurements.

Table 1. Simulation Parameters
Parameter Name Value
Carrier Frequency 28 GHz
Transmit Power 45 dBm
Codebook Size 32 (155◦ arc with 5◦ between entries)
Receiver Grid Size 160801 (400× 400 m, 1 m between Rx,

1 m above the ground)
Convolutional 1 layer (8 features with 3× 3

Layers filters, 2× 1 max-pooling)
Hidden Layers 12 (256 neurons each)
Class. Output Softmax with |S| classes
Regression Ouput 2 Linear Neurons (2D position)
Samples per Tx. BF 82 (4.1 µs @ 20 MHz)
Assumed Rx. Gain 10 dBi (as in [15])
Detection Threshold −100 dBm
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Fig. 3. Average and 95th percentile prediction errors for multiple
number of partitions and noise levels (σ). While it is a tool to extract
additional accuracy, an excessive number of partitions has adverse
consequences.

While the used ray-tracing software (Wireless InSite 3.0.0.1
[17]) was unable to control BF patterns, a physically rotating horn
antenna was used, producing similar directive radiation patterns.
The received power data was sampled at 20 MHz over a spawn of
4.1 µs, for each of the 32 elements in CTx. Regarding BF at the
receiver, a 10 dBi gain was considered (akin to [15]). When the area
is split for the hierarchical model, only powers of 4 partitions are
considered, where each physical dimension is subsequently bisected
(e.g. when 64 partitions are considered, each dimension is bisected
8 times, resulting in partitions with 50× 50 m2).

In the proposed system, noise is added to the obtained ray-
tracing data following a log-normal distribution (also known as
slow fading). The noise was introduced before applying a detection
threshold of −100 dBm, and the data is binarized after adding the
noise and applying the detection threshold. For each CNN training
epoch, a new training set is generated, consisting of the original
ray-tracing dataset entries with added random noise. Since the sys-
tem is expected to be used to predict physical positions for which
it already has training samples, the test set is also generated from
noisy samples of the ray-tracing data. The higher the noise level is,
the more different the training and test sets are expected to be. When
evaluating the average results, a total of 10 test sets are used.

The selected CNNs follow a typical architecture, whose hyper-
parameters (depicted in Table 1) were selected after the empirical
testing2 of a random hyperparameter search [18]. The classification
and the |S| regression CNNs share the same configuration and hy-
perparameters, except for the input of the first fully connected layer
and the output layer (see fig. 2 and Table 1). While sub-optimal,
they are all trying to extract similar information given similar data,
and thus using a single hyperparameter set yields satisfying results
while alleviating the search complexity.

4.2. Simulation Results and Discussion

The first assessed parameter is the number of data partitions (|S|),
as shown in fig. 3. It is interesting to notice that the predictions for
|S| > 64 keep roughly the same average error, at the expense of
an increased 95th percentile error. This means that although more
specialized regressors yield improved predictions on correctly clas-
sified samples, the higher number of misclassified samples reverts

2The simulation code and used data are available at
https://github.com/gante/mmWave-localization-learning
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Fig. 4. Average error per covered position, assuming |S| = 64 and
a noise σ of 6 dB. Given that the transmitter is at the center of the
image (red triangle), it is possible to confirm that being in a NLOS
position is not a constraint for the proposed system.

those gains, as discussed in Section 3. Considering a partion-less
dataset (i.e., |S| = 1), the average error ranges from 4.57 m to 6.17
m, for low and high noise values, respectively, with a 95th percentile
error never exceeding 16.3 m. The best results were obtained when
|S| = 64, with an average error ranging from 3.31 m to 5.13 m
and a 95th percentile error never exceeding 14.3 m. For a moderate
noise level of 6 dB, when those results are compared to the previous
work in [10], the average and 95th percentile errors were reduced
in 55% and 58%, respectively. It is important to clarify that the se-
lected partitions (subsequent bisections of the considered area) are
very likely to be sub-optimal. Nevertheless, they demonstrate the
applicability of hierarchical data to the considered problem, achiev-
ing performance gains with minimal effort.

In fig. 4, the average prediction error per position is show, con-
sidering σ = 6 dB and |S| = 64. Given that most of the lower
left corner has no mmWave coverage in the ray-tracing simulations,
and that the solid yellow figures throughout the figure are buildings,
it is possible to conclude that the system is always able to return a
positioning prediction as long as the mobile user is covered by the
mmWave network, with or without line-of-sight. For this configura-
tion, the predictions have an RMSE of 19.7 m, which denotes quite
superior performance in all aspects when compared to [9], whose
simulations obtained an RMSE of 35 m. Moreover, it is important to
point out that [9] considers a lower noise level, with σ = 5 dB (we
used 6 dB in our experiments), and its numerical simulations do not
contain NLOS positions, as we do.

5. CONCLUSIONS

Throughout this paper, a system that is able to provide outdoor posi-
tioning through the transmission of mmWave beamformed finger-
prints is further enhanced with hierarchical CNNs. With the in-
clusion of hierarchical CNNs, the received PDP similarity between
adjacent positions is exploited, reducing the average error by 55%
when compared to our previous work, while bringing no changes to
the device-side part of the system. By providing accurate estimates
even for NLOS positions, where other sub-meter-accuracy mmWave
positioning algorithms struggle, the proposed system can be seen not
only as an enabling component of the mmWave positioning tech-
niques ecosystem, but also as a potential alternative to GPS systems
when 5G networks become available.
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