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ABSTRACT 
 
Deblurring from a motion blurred image has been studied for 
some times. Recently, convolution neural network (CNN) has 
been used widely and it can be used on finding the blur kernel 
or the latent sharp edge of a blurred image. In recent years, 
the generative adversarial network (GAN) performs well on 
style transformation. We consider that a deblurring problem 
as a style transformation problem. We focus on improving the 
DeblurGAN’s generator, which is the state-of-the-art of the 
deblurring method and present a new kind of block which 
combined inception block, residual block and dense block to 
do deblurring from motion blur. By using the conception of 
DenseNet which can avoid overfitting. The improved 
DeblurGAN presents better in both structural similarity 
measure and by visual effect. 
 

1. INTRODUCTION 
 

Image deblurring has been studied in the field of image 
processing and computer vision. The problem can be divided 
into blind deblurring and non-blind deblurring. In general, we 
can use the degradation model of image deconvolution which 
is defined as: 

                     𝑏𝑏 = 𝑘𝑘 ∗ 𝑙𝑙 + 𝑛𝑛,         (1) 
where 𝑏𝑏 is the blurred image, 𝑙𝑙 is the latent sharp image, 𝑘𝑘 is 
the blur kernel, 𝑛𝑛  is additive noise and ∗  denotes a 
convolution operator. If the blur kernel is known, then it is a 
non-blind deblurring problem; otherwise, it is a blind 
deblurring problem. When solving the non-blind deblurring 
problem, we usually assume that the blur kernel is uniform. 
That is, the whole image is blurred by the same blur kernel. 
By deconvolution, we can restore the blurred image to a sharp 
latent image. If the blur kernel is not uniformed, for example, 
the background and the objects both move in their own ways 
at the same time while we shot the picture. The blur is caused 
by different trajectories. It is called motion blur. We can 
separate the blur image into many image patches. In each 
blurred image patch, we estimate its blur kernel and restore 
the latent image patch by the deconvolution of the blurred 
image patch. By combining all the restored image patches 
together, we get the final latent image. Whether the result is 
good or bad is dependent on the patches we divide.  

Deep learning has been widely studied recently. Many 
deblurring methods by using Convolutional Neural Network 
(CNN) have been proposed. Yan et al. [32] used CNN to 
estimate the blur kernel, by this kernel we can use traditional 

deconvolution method to get the restored image. Xu et al. [14] 
input the blur image and output the obvious edge for blur 
kernel estimation via deep learning. Some methods 
[5,7,10,13] present an end-to-end CNN architecture for 
directly recover the image from the blurred image without 
estimating the blur kernel. In this paper, we introduce a 
Generative Adversarial Network (GAN) proposed by Ian 
Goodfellow [15] to deal with this ill-posed problem. We also 
build a new block which called InceptionResDense (IRD) 
block to add in our GAN. The experimental results show that 
our method performs better than the ResNet [3]. The 
estimated latent image is very sharp with very high quality of 
detail structure in the recovered image. 
 

2. RELATED WORK 
 

In recent years, many deblurring methods [10,11,12,13,14] 
used convolutional neural network to replace priors based 
methods [8,9]. Chakrabarti [11] used a neural network to 
predict the Fourier coefficients of a filter by blurred image 
patches. He used these coefficients to generate a new input 
with less blur effect. Then he used the new input to do global 
kernel estimation and non-blind deconvolution to get 
estimated latent image. Xu et al. [14] proposed a deep CNN 
to extract sharp edges from a blurred image. The model 
consisted of two stages. The first is to suppress extraneous 
details and the second is to enhance sharp edges. Noroozi et 
al. [10] proposed DeblurNet which is a multiscale CNN 
architecture to predict a sharp image from a blurred image 
directly. In 2014, the generative adversarial network was 
introduced by Ian Goodfellow et al. [15]. His main idea is to 
build two competitive networks: a generator and a 
discriminator. The generator generates the image we want. 
The generator needs to generate images which can fool 
discriminator, and discriminator should not be fooled by the 
generated images. The game between the generator 𝐺𝐺 and the 
discriminator 𝐷𝐷 is the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 objective: 

𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 𝐸𝐸𝑥𝑥~𝑃𝑃𝑟𝑟�𝑙𝑙𝑙𝑙𝑙𝑙�𝐷𝐷(𝑥𝑥)�� + 𝐸𝐸𝑥̅𝑥~𝑃𝑃𝐺𝐺[𝑙𝑙𝑙𝑙𝑙𝑙(1 −𝐷𝐷(𝑥̅𝑥))], (2)  

where 𝑃𝑃𝑟𝑟  is the distribution of real data, 𝑃𝑃𝐺𝐺  is the distribution 
of the generated data 𝑥̅𝑥 = 𝐺𝐺(𝑧𝑧) , which means that 𝑥̅𝑥  is 
generated by the generator 𝐺𝐺 with a random sample   𝑧𝑧 from 
a simple noise distribution 𝑃𝑃𝑧𝑧. 

In [16], it mentioned that the training of this model would 
suffer problems such as mode collapse and vanishing 
gradients. These problems may be caused by minimizing the 
value function in GAN, which is equal to minimize the 
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Jensen-Shannon (JS) divergence between the data and model 
distributions. Arjovsky et al. [17] proposed Wasserstein GAN 
(WGAN) which uses Earth-Mover distance to replace the JS 
divergence because Earth-Mover distance provides more 
usable gradients everywhere. The value function for WGAN 
is written as: 

𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷  𝐸𝐸𝑥𝑥~𝑃𝑃𝑟𝑟[𝐷𝐷(𝑥𝑥)] − 𝐸𝐸𝑥̅𝑥~𝑃𝑃𝐺𝐺[𝐷𝐷(𝑥̅𝑥)], (3) 
where 𝐷𝐷  is the set of 1-Lipschitz functions, The notation 
𝑥𝑥~𝑃𝑃𝑟𝑟  denotes the input 𝑥𝑥  is a sample from real data 
distribution 𝑃𝑃𝑟𝑟  and 𝑥̅𝑥~𝑃𝑃𝐺𝐺  denotes input 𝑥̅𝑥  is a sample from 
the generated data distribution 𝑃𝑃𝐺𝐺 . The discriminator 𝐷𝐷 
approximates the distance between 𝑥𝑥  and 𝑥̅𝑥 . To enforce 
Lipschitz constraint in WGAN, Arjovsky et al. added weight 
clipping to [−c, c]. This technique may lead to optimization 
difficulties. Gulrajani et al. [18] proposed to add a gradient 
penalty term to the value function in equation (3) to enable 
stable training of wide variety of WGAN architectures: 

𝜆𝜆 𝐸𝐸𝑥𝑥�~𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[(||∇𝑥𝑥�𝐷𝐷(𝑥𝑥�)|| − 1)2],       (4) 

where 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the penalty distribution between 𝑃𝑃𝑟𝑟  and 𝑃𝑃𝐺𝐺 , 
𝑥𝑥�~𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  denotes sampling a point 𝑥𝑥�  from 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 
∇𝑥𝑥�𝐷𝐷(𝑥𝑥�) is the gradient between input 𝑥𝑥� and output 𝐷𝐷(𝑥𝑥�). 

In many papers, GANs have been used on different image-
to-image translation problems, like style transfer [19], super 
resolution [20], semantic segmentation [21] and others. Isola 
et al. [22] present conditional GAN (cGAN) which is known 
as pix2pix to learn a mapping function from an observed 
image 𝑥𝑥 and random noise vector 𝑧𝑧, to output the image 𝑦𝑦. 
That is,  

                      𝐺𝐺(𝑥𝑥, 𝑧𝑧) → 𝑦𝑦.                    (5) 
Some researchers also use cGAN’s characteristic to build 

a generator to generate sharp images through blur images. 
Ramakrishnan et al. [6] proposed a novel deep filter based on 
GAN architecture and integrated with DenseNet architecture 
and global skip connection in order to deal with the problem 
of the relative motion between the camera and the object in 
3D space induces a spatially varying blurring effect over the 
entire image. Kupyn et al. [1] presented DeblurGAN which 
is based on cGAN and ResNet architecture for motion 
deblurring. It achieves state-of-the-art in structure similarity 
(SSIM) and visual quality. 

 
3. PROPOSED METHOD 

 
We hope each layer of our generator can learn both sparse 
and non-sparse features of the blurred image. Also, we want 
our features can flow through the generator without changing 
the width and height. By the thoughts above, we can keep 
more detail information and use them to restore sharper 
images.  
 
3.1. Network Architecture 
Our GAN architecture includes one generator and one 
discriminator as shown in Figure 1. The generator generates 
a fake image to let the discriminator mistreat that the fake 
image is a realistic image. We mainly concentrate on the 

design of the generator of our GAN. In our generator shown 
in Figure 2, the width and the height of the feature maps will 
not be changed when flowing through the generator. In Figure 
2 we input a blurred image of size 256 x 256 x 3 and we want 
the next convolutional layer to output 256 x 256 x 64 feature 
maps with 64 kernels of 7 x 7 x 3. 
 

Figure 1. Our GAN architecture. 

 
Figure 2. Our generator architecture. 

Like Ramakrishnan et al. [6] we preserve the dimension of 
the information to prevent the network from generating 
checkerboard artifacts which usually be found in networks 
which use a pyramid structural architecture. We combined 
the inception-resnet concept of GoogLeNet [2, 23, 24 25] and 
densely connected networks proposed by Huang et al. [4] to 
build a new block. We called this block an IRD block. As 
shown in Figure 2 our GAN includes two convolution blocks 
with stride 2, nine IRD blocks, two transition blocks, two 
transposed convolution blocks and a global skip connection. 
 

Figure 3. The proposed InceptionResDense (IRD) block. 

We define a parameter N as the constant number of feature 
maps. The value of N is 64 in our experiment. Each 
convolution block consists of a 3 x 3 convolution layer, an 
instance normalization layer [26], and a ReLU [27] activation. 
We use two convolution blocks. The first one outputs 2N 
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(128) feature maps, and the second one outputs 4N (256) 
feature maps which is also the basic input of our first IRD 
block. 

Our IRD block shown in Figure 3 can be divided into three 
parts: bottleneck, inception part and residual concatenation 
part. The bottleneck part has a normalization layer, a ReLU 
activation and an 1x1 convolution layer. Its main purpose is 
to choke the input feature maps of (4+k)N into 4N in order to 
protect parameters and data memories in deeper layers of the 
network. The inception part consists of four branches. The 
first branch contents of an 1x1 convolution layer. The second 
branch is made by one 1x1 convolution layer and one 3x3 
convolution layer. The third branch is built by one 1x1 
convolution layer and two 3x3 convolution layers. The fourth 
branch comprises of a max pooling and an 1x1 convolution 
layer. We add an instance normalization layer and a ReLU 
activation after each convolution layer in the inception part. 
Each branch inputs 4N feature maps and outputs N maps. The 
output of these four branches will be concatenated into 4N 
feature maps and allow us to get sparse and non-sparse 
features. Through these branches we can not only make our 
network wider, but also gain the network adaptability to deal 
with different kinds of motion kernels. We also add a residual 
connection which is the same concept as ResNet [3] to build 
directly information connectivity. Our experiments show that 
it performs well and converges faster when we add the 
residual connection. In the residual concatenation part, we 
use one 3x3 convolution layer to transfer the feature maps 
into N and concatenate them behind the input feature maps as 
the output feature maps. 

The idea of the transition block is to transfer the output 
feature maps of the 9th IRD fro, 13N to 4N. We use two 
transition blocks to do this job. The first one reduces the 
feature maps from 13N to 7N. The second one reduces 7N 
into 4N. Each transition block is included an 1x1 convolution 
layer, an instance normalization layer and a ReLU activation. 
The transposed convolution is equal to deconvolution. We 
use these two transposed convolution blocks to do up-
sampling from the features of 2nd transition block. The 
transposed convolution block is established by one 
convolution transpose layer, one instance normalization layer 
and one ReLU layer. 

We introduce the global skip connection like many other 
methods do [1, 6, 12, 29]. Due to long-term memory effect, 
the global skip connection makes the generator easier to 
generate sharp boundaries at correct locations. It can be seen 
as: 

𝐼𝐼𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐺𝐺(𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵),         (6) 

where 𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the input blurred image, 𝐼𝐼𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 is the output 
image and 𝐺𝐺(𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) denotes  the generator 𝐺𝐺 generate the 
correction residual  image to restore the input blurred image 
to the sharper one. The global skip connection makes training 
faster and generates a better latent image. 

In this work, we defined our discriminator as DeblurGAN 
[1], which use PatchGAN [22, 33] as network architecture. 

The discriminator network is shallow that it memorizes the 
easier task of classification. All the convolution layers 
exclusive of the last layer are stacked with instance 
normalization layer and Leaky ReLU [28] with negative 
slope is 0.2. We input a generated image or a latent image and 
output a score map. Each pixel of the score map is between 0 
and 1 means the probability of whether the corresponding 
image patch is real or it is artificially generated. We also 
introduce Wasserstein GAN [17] in equation (3) with 
Gradient Penalty [18] in equation (4) to train our network. 
 
3.2. The Loss Function 
Our loss function is combined with perceptual loss, WGAN 
loss and l1-loss to train our generator: 

𝐿𝐿 = 𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 + 𝜆𝜆1𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝 + 𝜆𝜆2𝐿𝐿𝑙𝑙1,         (7) 

where 𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 , 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝 , 𝐿𝐿𝑙𝑙1  are explained below ,𝜆𝜆1 is 100 and 
𝜆𝜆2 is 170 in our experiments. 

The WGAN value function in equation (3) describes the 
game between generator and discriminator. When training the 
generator, we can rewrite the equation (3) as equation (8) 
below: 

𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = −𝐷𝐷𝜃𝜃𝐷𝐷(𝐺𝐺𝜃𝜃𝐺𝐺(𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)),    (8) 

where 𝐷𝐷𝜃𝜃𝐷𝐷  is the discriminator 𝐷𝐷 with its own parameters 𝜃𝜃𝐷𝐷, 
𝐺𝐺𝜃𝜃𝐺𝐺  is the generator 𝐺𝐺  with its own parameter 𝜃𝜃𝐺𝐺 , and 
𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  is the blurred image. We input the blurred image 
𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  to the generator 𝐺𝐺𝜃𝜃𝐺𝐺 to generate a latent image. The 
discriminator evaluates the latent image to get a score map. 
We want each pixel of the score map to be as closer as 
possible to 1 by using the minimization function in equation 
(8). 

We need some structural knowledge when training the 
network. Johnson et al. [30] proposed a perceptual loss 
function which can fit our need. The function is a kind of L2-
loss which is the Euclidean difference between deep 
convolutional activations of the generated image by the 
generator 𝐺𝐺 and the ground truth image. This loss term can 
be computed by VGG19 as: 

𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝 = 1
𝑊𝑊𝑖𝑖,𝑗𝑗𝐻𝐻𝑖𝑖,𝑗𝑗

∑ ∑ �𝜙𝜙𝑖𝑖,𝑗𝑗�𝐼𝐼𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎�𝑥𝑥,𝑦𝑦
−

𝐻𝐻𝑖𝑖,𝑗𝑗
𝑦𝑦=1

𝑊𝑊𝑖𝑖,𝑗𝑗
𝑥𝑥=1

𝜙𝜙𝑖𝑖,𝑗𝑗 �𝐺𝐺𝜃𝜃𝐺𝐺(𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)�
𝑥𝑥,𝑦𝑦
�
2
,            (9) 

where 𝑊𝑊𝑖𝑖,𝑗𝑗  ,𝐻𝐻𝑖𝑖,𝑗𝑗 are the width and height of the feature maps, 
𝜙𝜙𝑖𝑖,𝑗𝑗 is the feature map obtained by j-th convolution before the 
i-th max-pooling layer forward pass through the pre-trained 
VGG19 network. The generated image 𝐺𝐺𝜃𝜃𝐺𝐺(𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  and 
𝐼𝐼𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 are inputted to the VGG19 network individually and 
we calculate their Euclidean difference by their feature maps 
before the 14th convolution layer in the VGG19 network. 

When image blurred more heavily, we cannot restore the 
latent image with true sharp edge well. For example, the 
license plate of the restored car image has difficulty to 
identify. It seems to generate some extra-lines to pretend the 
license plate numbers in our GAN architecture without this 
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loss term. We simply add a L1 loss by the input generated 
image and ground truth to constraint the wrong lines. The L1-
loss function is: 

𝐿𝐿𝑙𝑙1 = �𝐼𝐼𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐺𝐺𝜃𝜃𝐺𝐺(𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)�.    (10) 

where 𝐼𝐼𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎  is the ground truth, 𝐺𝐺𝜃𝜃𝐺𝐺(𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  is a sharp 
image generated by the generator 𝐺𝐺𝜃𝜃𝐺𝐺 from the given blured 
image 𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. 
 
3.3 Training Details 
We use PyTorch to implement our GAN model. All the 
experiments were performed on a single GTX-1080-Ti GPU 
with GDDR5X 11G and i7-7700 processor with 16G RAM. 
The model was trained on a random crop of size 256x256 
from GoPro dataset images and MS-COCO dataset images 
which are blurred by the method described in [1]. We totally 
use 3217 images for training and 1111 images from GoPro 
dataset for testing. For the optimization we follow the 
approach of [1, 14] to do 5 gradient descent steps on 𝐷𝐷𝜃𝜃𝐷𝐷 , 
then 1 step on 𝐺𝐺𝜃𝜃𝐺𝐺 by Adam gradient descent method [31]. 
The learning rate is set to 10−4 and linearly decay the rate to 
0 after 150 epochs. The batch size is set to 1 that allows us to 
fit bigger image in the memory. We apply dropout = 0.2 after 
every IRD blocks by the idea of [1 ,22]. Our model needs 3 
days for training. 
 

4. EXPERIMENTAL RESULTS 
 

We evaluate our method on GoPro dataset [35]. We compare 
our experimental results with Kupyn et al. [1] and 
Ramakrishnan et al. [6] which are the state-of-the-art 
deblurring method by using GAN. We use our training 
dataset to re-train both [1,6]. In Table 1, we show the average 
peak signal to noise ratio (PSNR) and average structural 
similarity measure (SSIM) on the GoPro testing dataset of 
1111 images for each method. Most of our results perform 
better than those of state-of-the-art methods [1,6]. In  Figures 
4 and 5, we show the comparison results of GoPro testing 
dataset of 1111 images. We can see that our restored image 
has less ringing artifact and can easily recognize the texts 
compared to [1,6].  
 
Table 1. Comparisons of PSNRs and SSIMs with  [1,6]. 

Method PSNR SSIM 

Kupyn et al. [1] 27.1739 0.8338 

Ramakrishnan et al. [6] 25.8340 0.7898 

Our method 27.7883 0.8472 
 

(a) Input blurred image (b) PSNR = 30.3490,  
SSIM = 0.9077 

  
  

(c) PSNR = 28.4798,  
SSIM = 0.8876 

(d) PSNR = 31.4828,  
SSIM = 0.9217 

(e) Ground truth 

 

Figure 4. (a) Input blurred image. (b) Kupyn et al. [1].  
(c) Ramakrishnan et al. [6]  (d) Ours. (e) Ground truth.  
 

(a) Input blurred image (b) PSNR = 30.9102,  
SSIM = 0.9014 

(c) PSNR = 29.7662,  
SSIM = 0.8907 

(d) PSNR = 31.1337,  
SSIM = 0.9074 

(e) Ground truth 

 

Figure 5. (a) Input blurred image. (b) Kupyn et al. [1].  
(c) Ramakrishnan et al. [6]  (d) Ours. (e) Ground truth. 
 

5. CONCLUSIONS 
 

In this paper, we use WGAN to train a generator to generate 
a latent image with   a blurred one. We add the perceptual loss 
function and the L1-loss function into the total loss function. 
The proposed IRD block uses the concept of the GoogLeNet 
[2, 23, 24, 25] to get sparse and non-sparse features of the 
blurred image. Also, our WGAN combines the ResNet [3] to 
enhance the features and the DenseNet [4] to make sure the 
features can flow through the generator. Our experimental 
results out-perform other deblurring methods using GAN 
[1,6]. 
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