
BLIND MOTION DEBLURRING VIA INCEPTIONRESDENSENET BY USING GAN MODEL
1Ze-Ming Chen, 2Long-Wen Chang

Department of Computer Science, National Tsing Hua University, Taiwan

1w103127@gmail.com, 2lchang@cs.nthu.edu.tw

ABSTRACT

Deblurring from a motion blurred image has been studied for
some times. Recently, convolution neural network (CNN) has
been used widely and it can be used on finding the blur kernel
or the latent sharp edge of a blurred image. In recent years,
the generative adversarial network (GAN) performs well on
style transformation. We consider that a deblurring problem
as a style transformation problem. We focus on improving the
DeblurGAN’s generator, which is the state-of-the-art of the
deblurring method and present a new kind of block which
combined inception block, residual block and dense block to
do deblurring from motion blur. By using the conception of
DenseNet which can avoid overfitting. The improved
DeblurGAN presents better in both structural similarity
measure and by visual effect.

1. INTRODUCTION

Image deblurring has been studied in the field of image
processing and computer vision. The problem can be divided
into blind deblurring and non-blind deblurring. In general, we
can use the degradation model of image deconvolution which
is defined as:

 𝑏𝑏 = 𝑘𝑘 ∗ 𝑙𝑙 + 𝑛𝑛, (1)
where 𝑏𝑏 is the blurred image, 𝑙𝑙 is the latent sharp image, 𝑘𝑘 is
the blur kernel, 𝑛𝑛 is additive noise and ∗ denotes a
convolution operator. If the blur kernel is known, then it is a
non-blind deblurring problem; otherwise, it is a blind
deblurring problem. When solving the non-blind deblurring
problem, we usually assume that the blur kernel is uniform.
That is, the whole image is blurred by the same blur kernel.
By deconvolution, we can restore the blurred image to a sharp
latent image. If the blur kernel is not uniformed, for example,
the background and the objects both move in their own ways
at the same time while we shot the picture. The blur is caused
by different trajectories. It is called motion blur. We can
separate the blur image into many image patches. In each
blurred image patch, we estimate its blur kernel and restore
the latent image patch by the deconvolution of the blurred
image patch. By combining all the restored image patches
together, we get the final latent image. Whether the result is
good or bad is dependent on the patches we divide.

Deep learning has been widely studied recently. Many
deblurring methods by using Convolutional Neural Network
(CNN) have been proposed. Yan et al. [32] used CNN to
estimate the blur kernel, by this kernel we can use traditional

deconvolution method to get the restored image. Xu et al. [14]
input the blur image and output the obvious edge for blur
kernel estimation via deep learning. Some methods
[5,7,10,13] present an end-to-end CNN architecture for
directly recover the image from the blurred image without
estimating the blur kernel. In this paper, we introduce a
Generative Adversarial Network (GAN) proposed by Ian
Goodfellow [15] to deal with this ill-posed problem. We also
build a new block which called InceptionResDense (IRD)
block to add in our GAN. The experimental results show that
our method performs better than the ResNet [3]. The
estimated latent image is very sharp with very high quality of
detail structure in the recovered image.

2. RELATED WORK

In recent years, many deblurring methods [10,11,12,13,14]
used convolutional neural network to replace priors based
methods [8,9]. Chakrabarti [11] used a neural network to
predict the Fourier coefficients of a filter by blurred image
patches. He used these coefficients to generate a new input
with less blur effect. Then he used the new input to do global
kernel estimation and non-blind deconvolution to get
estimated latent image. Xu et al. [14] proposed a deep CNN
to extract sharp edges from a blurred image. The model
consisted of two stages. The first is to suppress extraneous
details and the second is to enhance sharp edges. Noroozi et
al. [10] proposed DeblurNet which is a multiscale CNN
architecture to predict a sharp image from a blurred image
directly. In 2014, the generative adversarial network was
introduced by Ian Goodfellow et al. [15]. His main idea is to
build two competitive networks: a generator and a
discriminator. The generator generates the image we want.
The generator needs to generate images which can fool
discriminator, and discriminator should not be fooled by the
generated images. The game between the generator 𝐺𝐺 and the
discriminator 𝐷𝐷 is the 𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 objective:

𝑚𝑚𝑚𝑚𝑛𝑛𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 𝐸𝐸𝑥𝑥~𝑃𝑃𝑟𝑟�𝑙𝑙𝑙𝑙𝑙𝑙�𝐷𝐷(𝑚𝑚)�� + 𝐸𝐸�̅�𝑥~𝑃𝑃𝐺𝐺[𝑙𝑙𝑙𝑙𝑙𝑙(1 −𝐷𝐷(�̅�𝑚))], (2)

where 𝑃𝑃𝑟𝑟 is the distribution of real data, 𝑃𝑃𝐺𝐺 is the distribution
of the generated data �̅�𝑚 = 𝐺𝐺(𝑧𝑧) , which means that �̅�𝑚 is
generated by the generator 𝐺𝐺 with a random sample 𝑧𝑧 from
a simple noise distribution 𝑃𝑃𝑧𝑧.

In [16], it mentioned that the training of this model would
suffer problems such as mode collapse and vanishing
gradients. These problems may be caused by minimizing the
value function in GAN, which is equal to minimize the

1463978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

Jensen-Shannon (JS) divergence between the data and model
distributions. Arjovsky et al. [17] proposed Wasserstein GAN
(WGAN) which uses Earth-Mover distance to replace the JS
divergence because Earth-Mover distance provides more
usable gradients everywhere. The value function for WGAN
is written as:

𝑚𝑚𝑚𝑚𝑛𝑛𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 𝐸𝐸𝑥𝑥~𝑃𝑃𝑟𝑟[𝐷𝐷(𝑚𝑚)] − 𝐸𝐸�̅�𝑥~𝑃𝑃𝐺𝐺[𝐷𝐷(�̅�𝑚)], (3)
where 𝐷𝐷 is the set of 1-Lipschitz functions, The notation
𝑚𝑚~𝑃𝑃𝑟𝑟 denotes the input 𝑚𝑚 is a sample from real data
distribution 𝑃𝑃𝑟𝑟 and �̅�𝑚~𝑃𝑃𝐺𝐺 denotes input �̅�𝑚 is a sample from
the generated data distribution 𝑃𝑃𝐺𝐺 . The discriminator 𝐷𝐷
approximates the distance between 𝑚𝑚 and �̅�𝑚 . To enforce
Lipschitz constraint in WGAN, Arjovsky et al. added weight
clipping to [−c, c]. This technique may lead to optimization
difficulties. Gulrajani et al. [18] proposed to add a gradient
penalty term to the value function in equation (3) to enable
stable training of wide variety of WGAN architectures:

𝜆𝜆 𝐸𝐸𝑥𝑥�~𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[(||∇𝑥𝑥�𝐷𝐷(𝑚𝑚�)|| − 1)2], (4)

where 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the penalty distribution between 𝑃𝑃𝑟𝑟 and 𝑃𝑃𝐺𝐺 ,
𝑚𝑚�~𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 denotes sampling a point 𝑚𝑚� from 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 .
∇𝑥𝑥�𝐷𝐷(𝑚𝑚�) is the gradient between input 𝑚𝑚� and output 𝐷𝐷(𝑚𝑚�).

In many papers, GANs have been used on different image-
to-image translation problems, like style transfer [19], super
resolution [20], semantic segmentation [21] and others. Isola
et al. [22] present conditional GAN (cGAN) which is known
as pix2pix to learn a mapping function from an observed
image 𝑚𝑚 and random noise vector 𝑧𝑧, to output the image 𝑦𝑦.
That is,

 𝐺𝐺(𝑚𝑚, 𝑧𝑧) → 𝑦𝑦. (5)
Some researchers also use cGAN’s characteristic to build

a generator to generate sharp images through blur images.
Ramakrishnan et al. [6] proposed a novel deep filter based on
GAN architecture and integrated with DenseNet architecture
and global skip connection in order to deal with the problem
of the relative motion between the camera and the object in
3D space induces a spatially varying blurring effect over the
entire image. Kupyn et al. [1] presented DeblurGAN which
is based on cGAN and ResNet architecture for motion
deblurring. It achieves state-of-the-art in structure similarity
(SSIM) and visual quality.

3. PROPOSED METHOD

We hope each layer of our generator can learn both sparse
and non-sparse features of the blurred image. Also, we want
our features can flow through the generator without changing
the width and height. By the thoughts above, we can keep
more detail information and use them to restore sharper
images.

3.1. Network Architecture
Our GAN architecture includes one generator and one
discriminator as shown in Figure 1. The generator generates
a fake image to let the discriminator mistreat that the fake
image is a realistic image. We mainly concentrate on the

design of the generator of our GAN. In our generator shown
in Figure 2, the width and the height of the feature maps will
not be changed when flowing through the generator. In Figure
2 we input a blurred image of size 256 x 256 x 3 and we want
the next convolutional layer to output 256 x 256 x 64 feature
maps with 64 kernels of 7 x 7 x 3.

Figure 1. Our GAN architecture.

Figure 2. Our generator architecture.

Like Ramakrishnan et al. [6] we preserve the dimension of
the information to prevent the network from generating
checkerboard artifacts which usually be found in networks
which use a pyramid structural architecture. We combined
the inception-resnet concept of GoogLeNet [2, 23, 24 25] and
densely connected networks proposed by Huang et al. [4] to
build a new block. We called this block an IRD block. As
shown in Figure 2 our GAN includes two convolution blocks
with stride 2, nine IRD blocks, two transition blocks, two
transposed convolution blocks and a global skip connection.

Figure 3. The proposed InceptionResDense (IRD) block.

We define a parameter N as the constant number of feature
maps. The value of N is 64 in our experiment. Each
convolution block consists of a 3 x 3 convolution layer, an
instance normalization layer [26], and a ReLU [27] activation.
We use two convolution blocks. The first one outputs 2N

1464

(128) feature maps, and the second one outputs 4N (256)
feature maps which is also the basic input of our first IRD
block.

Our IRD block shown in Figure 3 can be divided into three
parts: bottleneck, inception part and residual concatenation
part. The bottleneck part has a normalization layer, a ReLU
activation and an 1x1 convolution layer. Its main purpose is
to choke the input feature maps of (4+k)N into 4N in order to
protect parameters and data memories in deeper layers of the
network. The inception part consists of four branches. The
first branch contents of an 1x1 convolution layer. The second
branch is made by one 1x1 convolution layer and one 3x3
convolution layer. The third branch is built by one 1x1
convolution layer and two 3x3 convolution layers. The fourth
branch comprises of a max pooling and an 1x1 convolution
layer. We add an instance normalization layer and a ReLU
activation after each convolution layer in the inception part.
Each branch inputs 4N feature maps and outputs N maps. The
output of these four branches will be concatenated into 4N
feature maps and allow us to get sparse and non-sparse
features. Through these branches we can not only make our
network wider, but also gain the network adaptability to deal
with different kinds of motion kernels. We also add a residual
connection which is the same concept as ResNet [3] to build
directly information connectivity. Our experiments show that
it performs well and converges faster when we add the
residual connection. In the residual concatenation part, we
use one 3x3 convolution layer to transfer the feature maps
into N and concatenate them behind the input feature maps as
the output feature maps.

The idea of the transition block is to transfer the output
feature maps of the 9th IRD fro, 13N to 4N. We use two
transition blocks to do this job. The first one reduces the
feature maps from 13N to 7N. The second one reduces 7N
into 4N. Each transition block is included an 1x1 convolution
layer, an instance normalization layer and a ReLU activation.
The transposed convolution is equal to deconvolution. We
use these two transposed convolution blocks to do up-
sampling from the features of 2nd transition block. The
transposed convolution block is established by one
convolution transpose layer, one instance normalization layer
and one ReLU layer.

We introduce the global skip connection like many other
methods do [1, 6, 12, 29]. Due to long-term memory effect,
the global skip connection makes the generator easier to
generate sharp boundaries at correct locations. It can be seen
as:

𝐼𝐼𝑆𝑆ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = 𝐼𝐼𝐵𝐵𝑝𝑝𝐵𝐵𝑟𝑟𝑟𝑟𝑝𝑝𝐵𝐵 + 𝐺𝐺(𝐼𝐼𝐵𝐵𝑝𝑝𝐵𝐵𝑟𝑟𝑟𝑟𝑝𝑝𝐵𝐵), (6)

where 𝐼𝐼𝐵𝐵𝑝𝑝𝐵𝐵𝑟𝑟𝑟𝑟𝑝𝑝𝐵𝐵 is the input blurred image, 𝐼𝐼𝑆𝑆ℎ𝑝𝑝𝑟𝑟𝑝𝑝 is the output
image and 𝐺𝐺(𝐼𝐼𝐵𝐵𝑝𝑝𝐵𝐵𝑟𝑟𝑟𝑟𝑝𝑝𝐵𝐵) denotes the generator 𝐺𝐺 generate the
correction residual image to restore the input blurred image
to the sharper one. The global skip connection makes training
faster and generates a better latent image.

In this work, we defined our discriminator as DeblurGAN
[1], which use PatchGAN [22, 33] as network architecture.

The discriminator network is shallow that it memorizes the
easier task of classification. All the convolution layers
exclusive of the last layer are stacked with instance
normalization layer and Leaky ReLU [28] with negative
slope is 0.2. We input a generated image or a latent image and
output a score map. Each pixel of the score map is between 0
and 1 means the probability of whether the corresponding
image patch is real or it is artificially generated. We also
introduce Wasserstein GAN [17] in equation (3) with
Gradient Penalty [18] in equation (4) to train our network.

3.2. The Loss Function
Our loss function is combined with perceptual loss, WGAN
loss and l1-loss to train our generator:

𝐿𝐿 = 𝐿𝐿𝑊𝑊𝐺𝐺𝑊𝑊𝑊𝑊 + 𝜆𝜆1𝐿𝐿𝑝𝑝𝑝𝑝𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑝𝑝1, (7)

where 𝐿𝐿𝑊𝑊𝐺𝐺𝑊𝑊𝑊𝑊 , 𝐿𝐿𝑝𝑝𝑝𝑝𝑟𝑟 , 𝐿𝐿𝑝𝑝1 are explained below ,𝜆𝜆1 is 100 and
𝜆𝜆2 is 170 in our experiments.

The WGAN value function in equation (3) describes the
game between generator and discriminator. When training the
generator, we can rewrite the equation (3) as equation (8)
below:

𝐿𝐿𝑊𝑊𝐺𝐺𝑊𝑊𝑊𝑊 = −𝐷𝐷𝜃𝜃𝐷𝐷(𝐺𝐺𝜃𝜃𝐺𝐺(𝐼𝐼𝐵𝐵𝑝𝑝𝐵𝐵𝑟𝑟𝑟𝑟𝑝𝑝𝐵𝐵)), (8)

where 𝐷𝐷𝜃𝜃𝐷𝐷 is the discriminator 𝐷𝐷 with its own parameters 𝜃𝜃𝐷𝐷,
𝐺𝐺𝜃𝜃𝐺𝐺 is the generator 𝐺𝐺 with its own parameter 𝜃𝜃𝐺𝐺 , and
𝐼𝐼𝐵𝐵𝑝𝑝𝐵𝐵𝑟𝑟𝑟𝑟𝑝𝑝𝐵𝐵 is the blurred image. We input the blurred image
𝐼𝐼𝐵𝐵𝑝𝑝𝐵𝐵𝑟𝑟𝑟𝑟𝑝𝑝𝐵𝐵 to the generator 𝐺𝐺𝜃𝜃𝐺𝐺 to generate a latent image. The
discriminator evaluates the latent image to get a score map.
We want each pixel of the score map to be as closer as
possible to 1 by using the minimization function in equation
(8).

We need some structural knowledge when training the
network. Johnson et al. [30] proposed a perceptual loss
function which can fit our need. The function is a kind of L2-
loss which is the Euclidean difference between deep
convolutional activations of the generated image by the
generator 𝐺𝐺 and the ground truth image. This loss term can
be computed by VGG19 as:

𝐿𝐿𝑝𝑝𝑝𝑝𝑟𝑟 = 1
𝑊𝑊𝑖𝑖,𝑗𝑗𝐻𝐻𝑖𝑖,𝑗𝑗

∑ ∑ �𝜙𝜙𝑖𝑖,𝑗𝑗�𝐼𝐼𝑆𝑆ℎ𝑝𝑝𝑟𝑟𝑝𝑝�𝑥𝑥,𝑝𝑝
−

𝐻𝐻𝑖𝑖,𝑗𝑗
𝑝𝑝=1

𝑊𝑊𝑖𝑖,𝑗𝑗
𝑥𝑥=1

𝜙𝜙𝑖𝑖,𝑗𝑗 �𝐺𝐺𝜃𝜃𝐺𝐺(𝐼𝐼𝐵𝐵𝑝𝑝𝐵𝐵𝑟𝑟𝑟𝑟𝑝𝑝𝐵𝐵)�
𝑥𝑥,𝑝𝑝
�
2
, (9)

where 𝑊𝑊𝑖𝑖,𝑗𝑗 ,𝐻𝐻𝑖𝑖,𝑗𝑗 are the width and height of the feature maps,
𝜙𝜙𝑖𝑖,𝑗𝑗 is the feature map obtained by j-th convolution before the
i-th max-pooling layer forward pass through the pre-trained
VGG19 network. The generated image 𝐺𝐺𝜃𝜃𝐺𝐺(𝐼𝐼𝐵𝐵𝑝𝑝𝐵𝐵𝑟𝑟𝑟𝑟𝑝𝑝𝐵𝐵) and
𝐼𝐼𝑆𝑆ℎ𝑝𝑝𝑟𝑟𝑝𝑝 are inputted to the VGG19 network individually and
we calculate their Euclidean difference by their feature maps
before the 14th convolution layer in the VGG19 network.

When image blurred more heavily, we cannot restore the
latent image with true sharp edge well. For example, the
license plate of the restored car image has difficulty to
identify. It seems to generate some extra-lines to pretend the
license plate numbers in our GAN architecture without this

1465

loss term. We simply add a L1 loss by the input generated
image and ground truth to constraint the wrong lines. The L1-
loss function is:

𝐿𝐿𝑝𝑝1 = �𝐼𝐼𝑆𝑆ℎ𝑝𝑝𝑟𝑟𝑝𝑝 − 𝐺𝐺𝜃𝜃𝐺𝐺(𝐼𝐼𝐵𝐵𝑝𝑝𝐵𝐵𝑟𝑟𝑟𝑟𝑝𝑝𝐵𝐵)�. (10)

where 𝐼𝐼𝑆𝑆ℎ𝑝𝑝𝑟𝑟𝑝𝑝 is the ground truth, 𝐺𝐺𝜃𝜃𝐺𝐺(𝐼𝐼𝐵𝐵𝑝𝑝𝐵𝐵𝑟𝑟𝑟𝑟𝑝𝑝𝐵𝐵) is a sharp
image generated by the generator 𝐺𝐺𝜃𝜃𝐺𝐺 from the given blured
image 𝐼𝐼𝐵𝐵𝑝𝑝𝐵𝐵𝑟𝑟𝑟𝑟𝑝𝑝𝐵𝐵.

3.3 Training Details
We use PyTorch to implement our GAN model. All the
experiments were performed on a single GTX-1080-Ti GPU
with GDDR5X 11G and i7-7700 processor with 16G RAM.
The model was trained on a random crop of size 256x256
from GoPro dataset images and MS-COCO dataset images
which are blurred by the method described in [1]. We totally
use 3217 images for training and 1111 images from GoPro
dataset for testing. For the optimization we follow the
approach of [1, 14] to do 5 gradient descent steps on 𝐷𝐷𝜃𝜃𝐷𝐷 ,
then 1 step on 𝐺𝐺𝜃𝜃𝐺𝐺 by Adam gradient descent method [31].
The learning rate is set to 10−4 and linearly decay the rate to
0 after 150 epochs. The batch size is set to 1 that allows us to
fit bigger image in the memory. We apply dropout = 0.2 after
every IRD blocks by the idea of [1 ,22]. Our model needs 3
days for training.

4. EXPERIMENTAL RESULTS

We evaluate our method on GoPro dataset [35]. We compare
our experimental results with Kupyn et al. [1] and
Ramakrishnan et al. [6] which are the state-of-the-art
deblurring method by using GAN. We use our training
dataset to re-train both [1,6]. In Table 1, we show the average
peak signal to noise ratio (PSNR) and average structural
similarity measure (SSIM) on the GoPro testing dataset of
1111 images for each method. Most of our results perform
better than those of state-of-the-art methods [1,6]. In Figures
4 and 5, we show the comparison results of GoPro testing
dataset of 1111 images. We can see that our restored image
has less ringing artifact and can easily recognize the texts
compared to [1,6].

Table 1. Comparisons of PSNRs and SSIMs with [1,6].

Method PSNR SSIM

Kupyn et al. [1] 27.1739 0.8338

Ramakrishnan et al. [6] 25.8340 0.7898

Our method 27.7883 0.8472

(a) Input blurred image (b) PSNR = 30.3490,
SSIM = 0.9077

(c) PSNR = 28.4798,
SSIM = 0.8876

(d) PSNR = 31.4828,
SSIM = 0.9217

(e) Ground truth

Figure 4. (a) Input blurred image. (b) Kupyn et al. [1].
(c) Ramakrishnan et al. [6] (d) Ours. (e) Ground truth.

(a) Input blurred image (b) PSNR = 30.9102,
SSIM = 0.9014

(c) PSNR = 29.7662,
SSIM = 0.8907

(d) PSNR = 31.1337,
SSIM = 0.9074

(e) Ground truth

Figure 5. (a) Input blurred image. (b) Kupyn et al. [1].
(c) Ramakrishnan et al. [6] (d) Ours. (e) Ground truth.

5. CONCLUSIONS

In this paper, we use WGAN to train a generator to generate
a latent image with a blurred one. We add the perceptual loss
function and the L1-loss function into the total loss function.
The proposed IRD block uses the concept of the GoogLeNet
[2, 23, 24, 25] to get sparse and non-sparse features of the
blurred image. Also, our WGAN combines the ResNet [3] to
enhance the features and the DenseNet [4] to make sure the
features can flow through the generator. Our experimental
results out-perform other deblurring methods using GAN
[1,6].

1466

6. REFERENCES
[1] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, J. Matas.
“DeblurGAN: Blind Motion Deblurring Using Conditional
Adversarial Networks,” arXiv:1711.07064v4, 2018.

[2] C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi. “Inception-v4,
Inception-ResNet and the Impact of Residual Connections on
Learning,” arXiv: 1602.07261v2, 2016.

[3] K. He, X. Zhang, S. Ren, J. Sun. “Deep Residual Learning for
Image Recognition,” arXiv: 1512.00385, 2015.

[4] G. Huang, Z. Liu, L. van der Maaten. “Densely Connected
Convolutional Networks,” arXiv: 1608.06993, Jan. 2018.

[5] L. Wang, Y. Li, S. Wang. “DeepDeblur: Fast one-step blurry
face images restoration,” arXiv: 1711.09515v1, 2017.

[6] S. Ramakrishnan, S. Pachori, A. Gangopadhyay, S. Raman.
“Deep Generative Filter for Motion Deblurring,” arXiv:
1709.03481v1, 2017.

[7] T. M. Nimisha, A. K. Singh, A. N. Rajagopalan. “Blur-Invariant
Deep Learning for Blind-Deblurring,” IEEE International
Conference on Computer Vision (ICCV), pp. 4762-4770, Oct 2017.

 [8] D. Krishnan, T. Tay, R. Fergus. “Blind Deconvolution Using a
Normalized Sparsity Measure,” In Proceedings of the IEEE
Computer Vision and Pattern Recognition (CVPR), pp. 233-240,
June 2011.

[9] J. Pan, Z. Hu, Z. Su, M. Yang. “Deblurring Text Images via L0-
Regularized Intensity and Gradient Prior,” In Proceedings of the
IEEE Computer Vision and Pattern Recognition (CVPR), pp. 2901-
2908, June 2014.

[10] M. Noroozi, P. Chandramouli, P. Favaro. “Motion Deblurring
in the Wild,” arXiv: 1701.01486v2, Jan 2017.

[11] A. Chakrabarti. “A Neural Approach to Blind Motion
Deblurring,” arXiv: 1603.04771v2, Aug 2016.

[12] H. Son, S. Lee. “Fast Non-blind Deconvolution via Regularized
Residual Networks with Long/Short Skip-Connections,” IEEE
International Conference on Conference Photography (ICCP), pp.
1-10, May 2017.

[13] M. Hradiš, J. Kotera, P. Zemcík, F. Šroubek. “Convolutional
Neural Networks for Direct Text Deblurring,” In Proceedings of the
British Machine Vision Conference (BMVC), pp. 6.1-6.13, Sept
2015.

[14] X. Xu, J. Pan, Y. Zhang, M. Yang. “Motion Blur Kernel
Estimation via Deep Learning,” IEEE Transaction on Image
Processing, pp. 194-205, Sept 2017.

[15] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, Y. Bengio. “Generative Adversarial
Nets,” In Advances in Neural Information Proceeding Systems
(NIPS), pp. 2672-2680, 2014.

[16] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A.
Radford, X. Chen. “Improved Techniques for Training GANs,”
arXiv: 1606.03498, June 2016.

[17] M. Arjovsky, S. Chintala, L. Bottou. “Wasserstein GAN,”
arXiv: 1701.07875, Dec 2017.

[18] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, Aaron
Courville. “Improved Training of Wasserstein GANs,” arXiv:
1704.00028, Dec 2017.

[19] J. Zhu, T. Park, P. Isola, A. A. Efros. “Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial Networks,”
arXiv: 1703.10593, Feb 2018.

[20] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A.
Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, W. Shi. “Photo-
Realistic Single Image Super-Resolution Using a Generative
Adversarial Network,” arXiv: 1609.04802, May 2017.

[21] P. Luc, C. Couprie, S. Chintala, J. Verbeek. “Semantic
Segmentation using Adversarial Networks,” arXiv: 1611.08408,
Nov 2016.
[22] P. Isola, J. Zhu, T. Zhou, A. A. Efros. “Image-to-Image
Translation with Conditional Adversarial Networks,” arXiv:
1611.07004, Nov 2017.
[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, A. Rabinovich. “Going deeper with
convolutions,” In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp.1-9, June 2015.
[24] S. Ioffe, C. Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” arXiv:
1502.03167, Mar 2015.
[25] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna.
“Rethinking the Inception Architecture for Computer Vision,” arXiv:
1512.00567, Dec 2015.
[26] D. Ulyanov, A. Vedaldi, V. Lempitsky. “Instance
Normalization: The Missing Ingredient for Fast Stylization,” arXiv:
1607.08022, Nov 2017.
[27] V. Nair, G. E. Hinton. “Rectified Linear Units Improve
Restricted Boltzmann Machines,” In Proceedings of the 27th
International Conference on Machine Learning, Haifa, Israel, 2010.
[28] A. L. Maas, A. Y. Hannun, A. Y. Ng. “Rectifier Nonlinearities
Improve Neural Network Acoustic Models,” In Proceedings of the
30th International Conference on Machine Learning, Atlanta,
Georgia, USA, 2013.
[29] Z. Shen, W. Lai, T. Xu, J. Kautz, M. Yang. “Deep Semantic
Face Deblurring,” In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.
[30] J. Johnson, A. Alahi, Li Fei-Fei. “Perceptual Losses for Real-
Time Style Transfer and Super-Resolution,” arXiv: 1603.08155,
Mar 2016.
 [31] D. P. Kingma, J. L. Ba. “ADAM: A METHOD FOR
STOCHASTIC OPTIMIZATION,” Conference paper at the 3rd
International Conference for Learning Representations (ICLR),
2015.
[32] R. Yan and L. Shao. “Blind Image Blur Estimation via Deep
Learning,” IEEE Transaction on Image Processing, vol. 25, no. 4,
pp. 1910-1921, Apr 2016.
[33] C. Li and M. Wand. “Precomputed Real-Time Texture
Synthesis with Markovian Generative Adversarial Networks,” arXiv:
1604.04382v1, Apr 2016.
[34] R. Köhler, M. Hirsch, B. Mohler, B. Schölkopf, S. Harmeling.
“Recording and playback of camera shake: benchmarking blind
deconvolution with a real-world database,” In ECCV, pp. 27-40,
2012.
[35] S. Nah, T. H. Kim, K. M. Lee. “Deep Multi-scale Convolutional
Neural Network for Dynamic Scene Deblurring,” In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

1467

		2019-03-18T10:58:48-0500
	Preflight Ticket Signature

