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ABSTRACT

Many previous methods have demonstrated the importance
of considering semantically relevant objects for carrying out
video-based human activity recognition, yet none of the meth-
ods have harvested the power of large text corpora to relate the
objects and the activities to be transferred into learning a uni-
fied deep convolutional neural network. We present a novel
activity recognition CNN which co-learns the object recog-
nition task in an end-to-end multitask learning scheme to im-
prove upon the baseline activity recognition performance. We
further improve upon the multitask learning approach by ex-
ploiting a text-guided semantic space to select the most rele-
vant objects with respect to the target activities. To the best of
our knowledge, we are the first to investigate this approach.

Index Terms— text-guided, CNN, activity recognition,
object recognition, word2vec

1. INTRODUCTION

In recent years, a significant amount of research in the com-
puter vision community has focused on human activity recog-
nition. The objective of this research is to be able to automat-
ically recognize and understand what humans depicted in a
video are doing. Among many approaches, a group of au-
thors have shown that recognizing human activities can be
better performed by incorporating various external informa-
tion. One of the popular and effective external information
has been proved to be exploiting relevant objects which reside
in different human-involved activities or events [1, 2, 3, 4, 5].

Following the similar spirit, we also attempt to tackle the
problem of human activity recognition by incorporating the
relevant object information, but with a novel text-guided se-
mantics to constrain the relevant objects with respect to the
target activities. Technically, we seek to train a deep con-
volutional neural network (CNN) using a multitask learning
[6, 7, 8, 9] scheme, where activity recognition and object
recognition is learned concurrently. This approach helps the
overall network training in two ways. First, it allows us to
exploit a large object recognition dataset to boost the amount
of training data we have. Second, it allows us to incorporate
general knowledge from text about the target activities that
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may not be fully apparent from the training videos, which in
turn, improves the overall activity recognition performance.

One advantageous aspect of our approach in learning the
task of object recognition alongside the main task (i.e., activ-
ity recognition) is that we do not seek to localize the objects
within the human activity scenes, but instead harvest the ob-
ject information by simply using a shared network between
the two tasks. As we are enforcing two separate loss func-
tions, although using a shared network, we can make use of
the vast amount of object recognition dataset (e.g., ImageNet
[10]) and save the hassle of having to provide object bound-
ing box ground truth. Moreover, this enables us to use much
deeper networks without overfitting, thus achieving higher
recognition rates.

In order to effectively incorporate the “relevant” objects
information into the training of activity/object recognition
network, we devise a novel approach called ‘Text-guided Rel-
evance Analysis (TRA)’ where we analyze the relationship
between the activities and the objects within a text-guided
semantic space. We make use of the textual labels for the
activities as well as the objects such as “tennis swing”, “blow
candles”, “ball” which are provided by the original dataset.
In order to project these textual labels into a common seman-
tic space, we use Word2Vec [11] word embedding. Based
on the fact that semantically similar words are likely to be
embedded in close locations in the semantic vector space, we
approximate the relevance between the objects and the target
activities within this space.

We experimentally show that incorporating the objects
and applying TRA for relevant object selection are both ef-
fective in outperforming the baselines for human activity
recognition.

2. OUR METHOD

2.1. Incorporating Object Recognition with Activity
Recognition in Multitask Learning

Previous approaches have demonstrated that being able to de-
tect or recognize objects within an image can improve recog-
nition of relevant events and activities in that image [4, 2].
We take a similar approach in exploiting the object informa-
tion but with two major novel aspects. First, we introduce a
practical way of training and enhancing the activity recog-
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Fig. 1: Object-incorporated activity recognition network
architecture. Colored region of the network is being
shared between the ActivityNet and the ObjectNet, while
the grayscale portions (softmax linear classifiers) are learned
separately to handle the specific tasks of activity and object
recognition.

nition network by carrying out the multitask learning with
the object recognition network. Moreover, unlike the previ-
ous approaches, we do not attempt to localize or identify the
objects within the target domain (in our case, activity recog-
nition) but train the network to perform the task of object
recognition using a totally different dataset (ImageNet). This
bolsters the amount of training data for the overall network,
and at the same time, removes the need for manually anno-
tating/detecting the relevant objects in the target videos. As
shown in Figure 1, we share the weights in all the layers of
the network between the two tasks except the task-specific
softmax classifiers.

Datasets we use for the training (UCF101 [12] and Im-
ageNet [10]) are only annotated for each single task (i.e.,
videos frames for activity recognition and ImageNet images
for object recognition). Thus, we design the network so that
each data sample is directly associated with the loss func-
tion for the corresponding task. However, as we ground our
method in the relevance of the two tasks, all the layers except
the softmax layer are being shared between the two tasks.

We can view our multitask learning approach as an ex-
tension of the standard finetuning strategy (Figure 2a). In
training our network we learn the parameter weights for both
the activity recognition (ActivityNet) and the object recogni-
tion (ObjectNet) by finetuning from the network pretrained
for the task of the object recognition (ObjectNet) as shown in
Figure 2b. The continuation of the incorporation of gradients
from the object recognition loss acts as a regularization for the
overall network parameters, preventing them from overfitting
to the activity recognition task. As our pretrained ObjectNet,
we have used the network which was trained to classify 1000
object classes assigned by the ImageNet Challenge [10].
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Fig. 2: Activity recognition network training strategies.
ActivityNet and ObjectNet refer to CNNs for recognizing the
activities or objects, respectively. (a) Baseline activity recog-
nition network which finetunes from the pretrained ObjectNet
(b) Object-incorporated activity recognition network (c) Text-
guided, object-incorporated activity recognition network.

2.2. Leveraging the text-guided semantic space

The object-incorporated activity recognition network intro-
duced in Section 2.1 uses all the objects from the ImageNet
dataset to learn the ObjectNet, and thus solely relies on the ca-
pability of the multitask network learning process to harvest
the necessary information about the objects with respect to
the activities. We seek to further improve upon our object-
incorporated activity recognition network by exploring the
following questions: Which objects are more important and
indicative for certain activities? Would selecting this subset
of objects help improve activity recognition?

Our strategy is to refine the original object dataset before
proceeding into the network training by selecting the most
relevant set of objects with respect to the activities in the tar-
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Fig. 3: Text-guided Relevance Analysis in the semantic
space. Closely related activities and objects are aggregated
in the text-guided semantic space using the Word2Vec em-
bedding. In our experiments, object labels correspond to Im-
ageNet class labels.

get domain. To select the most relevant objects, we carry out
what we call ‘Text-guided Relevance Analysis (TRA)’ where
we compute the similarity between the textual labels of the ac-
tivities and those of the ImageNet objects within a semantic
vector space. We exploit the the textual labels which are orig-
inally provided from both datasets (UCF101 and ImageNet).

In TRA, we use Word2Vec [11] embedding to project the
textual labels to the semantic vector space. Word2Vec em-
beds words and phrases into a vector space based on their
usage in a large text corpora. Words that are used in similar
contexts will be embedded closer together in the vector space.
An illustration of the text-guided semantic space is shown in
Figure 3, where the activity label “tennis swing” is closely
embedded with the object labels “ball” and “racket”.

Assuming ω(·) as the embedding learned by Word2Vec,
we approximate the relevance between a target activity x and
an ImageNet class y with the cosine similarity of their vector
space representations as follows:

ϕ(x, y) =
ω(x) · ω(y)

‖ω(x)‖2‖ω(y)‖2
. (1)

We then compute the overall relevance κ of an ImageNet
class y ∈ Y to the set of target activities X as the sum of the
relevances of y to each activity x ∈ X ,

κ(y|X) =
∑
x∈X

ϕ(x, y). (2)

Once we acquire κ(·) for all ImageNet classes, we se-
lect the most relevant classes (those whose relevance score
is numerically highest) to be used for training the “text-
guided, object-incorporated activity recognition network”.
This overall process of TRA (See Figure 2c), can be con-
sidered a dataset refinement procedure f(·) for the original
object recognition dataset Y as Y ′ = f(X,Y ):

Table 1: Highly ranked ImageNet classes using TRA. Top
3 ImageNet classes for a set of selected activity classes.

Activity (UCF101) 1st 2nd 3rd

ApplyLipstick lipstick mascara nail polish

Biking bicycling cycling motorcycle

Knitting quilting needlework knit

MilitaryParade soldier Marine admiral

cliffDiving cliff dive ledge

Y ′ = f(X,Y ) = {y : rank(κ(y|X)) ≤ m, y ∈ Y }, (3)

where rank(κ(y|X)) indicates the rank in descending order
among all κ(y|X) such that x ∈ X and y ∈ Y , while m is
the number of selected objects within Y . Based on an empir-
ical analysis, we selected, for our image input dataset (iden-
tified as Y in Figure 2c), the images that have text-labels for
1000 objects (m = 1000) for training the final version of the
network. In Table 1, we introduce some samples of highly
ranked object (ImageNet) classes with respect to the activity
(UCF101) classes acquired by the TRA.

3. EXPERIMENTS

3.1. Experimental details

Preprocessing the data. First, we subtract a mean pixel from
each pixel in the image. Then we select a random window
from the target frame. The window’s width and height are
randomly and independently selected (from a uniform distri-
bution) to be between 168 and 256 pixels. Once the width
and height are selected, the location of the window within the
image is selected at random (again, from a uniform distribu-
tion). Finally, the window is resized to 224×224 pixels and
fed into the network. The random window selection process
helps to generate more variation in the training data to reduce
the risk of overfitting. For the ImageNet images, we still
subtract the pixel mean, but select a sub-image by simply
choosing a random 224×224 window from the image. We
can use a simpler window selection with ImageNet because
it contains many more images which are uncorrelated unlike
the video frames which are highly correlated.

Network architecture setting. We use the ResNet [13] ar-
chitectures (ResNet 50, 100, and 152) which has recently
demonstrated the state-of-the-art performance in various ap-
plications. This is in contrast to previous approaches which
use shallower networks. Our multitask approach acts as a reg-
ularization, enabling us to use the deeper, better-performing
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ResNet networks. All networks are initialized by pretraining
on the 1000 ImageNet challenge classes.

We incorporate the Temporal Segment Network (TSN)
[14] approach in training our networks which is known to
capture long-term temporal information. We have empiri-
cally determined the optimal number of segments to be three,
and thus the size of the activity recognition portion of the
batch was set to be a multiple of three. For example, when
training our ResNet 50 network, total batch size is 64. Ideally,
we would split it evenly between the two network streams (32
each). However, as 32 is not a multiple of three, we use 33
activity recognition samples and 31 ImageNet samples.

Training strategy. We train our networks with stochastic
gradient descent on single GPU (NVIDIA TITAN X) system.
Due to the depths of the networks used and the memory limi-
tations of the GPU (12 GB), we were forced to use small batch
sizes of 64, 48, and 32 frames/images for ResNet 50, 101,
and 152, respectively. When training in the multitask setting,
we split the batch size between activity recognition frames
and ImageNet images. We found that splitting the batch ap-
proximately evenly between the two (i.e., giving equal weight
to the two objectives) provided the best performance. Note
that, in generating each batch for training, activity recogni-
tion frames and the ImageNet images are pulled out in a ran-
dom fashion, i.e., no correlation or relevance metric is used to
forcefully pull the images from two different datasets.

When training ResNet 50, we initialize the learning rate
to .001. We divide it by 10 after 10k and 13k iterations and
train for 15k iterations in total. Due to the smaller batch sizes,
we initialize the learning rates for the ResNet 101 and 152 to
.0005. For ResNet 101, we divide it by 10 after 13k and 18k
iterations and train for 20k iterations in total. For ResNet 152,
we divide it by 10 after 28k and 36k iterations and train for
40k iterations in total. Weight decay was set as .0001. During
training of all three architectures, we place dropout layers just
before the final softmax classifiers. Dropout rate is set as .25.

At test time, we use the standard approach of generating
predictions for 25 evenly spaced frames. For each frame, we
generate predictions from 10 different 224×224 pixel win-
dows: one from each corner of the frame, one from the center
of the frame, and then a horizontally flipped version of each of
those. For each video, 250 probability predictions are made
for each of the classes. We average them and predict the ac-
tivity with the highest value. In this work, we use a Word2Vec
model which was trained on an internal Google dataset of
news articles containing a billion words [11]. One may also
experiment with other types of word embedding models such
as gloVe [15], fastText [16], or LexVec[17, 18, 19].

3.2. Performance Evaluation

We evaluate the performance of our approach on the UCF
101 benchmark dataset [12]. We have used the ResNet

Table 2: Performance comparison. Accuracy on UCF 101
Dataset. See Figure 2 for the different training strategies.

Baseline object incorp. object incorp.

+ text-guided

Multitask? No Yes Yes

ResNet 50 81.3 84.0 85.1

ResNet 101 82.6 85.3 86.9

ResNet 152 83.1 86.0 87.5

TSN [14] 85.7 - -

to construct the baseline architecture for both the activi-
tyNet and the objectNet (See Figure 1). The experiments
were carried out on three different ResNet networks (ResNet
50, 101, and 152) under three different settings (baseline,
object-incorporated, text-guided + object-incorporated). The
baseline approach is the standard method without multitask
learning. For the object-incorporated multitask approach, we
randomly selected 1000 ImageNet classes to learn the object-
Net. The text-guided + object-incorporated approach uses
Word2Vec to select the 1000 most relevant ImageNet classes
as described in Section 2.2.

From the results shown in Table 2, it is clear that using
the ResNet networks with the baseline approach provides
worse performance than the state-of-the-art method (TSN
[14]). This is because the architecture used in [14] uses
shallower networks which are not as prone to overfitting.
When we incorporate the object information in a multitask
learning scheme (object-incorporated), the performance in-
creases close to the current state-of-the-art. And finally, when
we exploit the text-guided supervision on top of the object
incorporation, we are able to outperform the state-of-the-art.

4. CONCLUSION

We have introduced a novel way of constructing an object-
incorporated and text-guided CNN to better handle the task of
video-based human activity recognition. We do this by lever-
aging the text-guided semantic space to select the most com-
monly associated objects with respect to the target activities.
We then train the network to recognize the target activities
as well as the selected set of objects by exploiting a shared
network and a multitask learning approach. We have exper-
imentally verified that the strategies of incorporating objects
for activity recognition and text-guided object selection are
both effective in improving the performance for the human
activity recognition. In the future, we are seeking to incor-
porate the background scenes into our framework as it also
carries significant semantic information for the activities.

1461



5. REFERENCES

[1] Nazli Ikizler-Cinbis and Stan Sclaroff, “Object, scene
and actions: Combining multiple features for human ac-
tion recognition,” in ECCV 2010, Kostas Daniilidis, Pet-
ros Maragos, and Nikos Paragios, Eds., Berlin, Heidel-
berg, 2010, pp. 494–507, Springer Berlin Heidelberg.

[2] Sungmin Eum, Hyungtae Lee, Heesung Kwon, and
David Doermann, “IOD-CNN: Integrating object detec-
tion networks for event recognition,” in International
Conference on Image Processing (ICIP), 2017.

[3] Tanvi S. Motwani and Raymond J. Mooney, “Improv-
ing video activity recognition using object recognition
and text mining,” in European Conference on Artificial
Intelligence (ECAI), 2012.

[4] Victor Escorcia and Juan Carlos Niebles, “Spatio-
temporal human-object interactions for action recogni-
tion in videos,” in International Conference on Com-
puter Vision Workshop, 2013.

[5] Hyungtae Lee, Sungmin Eum, Joel Levis, Heesung
Kwon, James Michaelis, and Michael Kolodny, “Ex-
ploitation of semantic keywords for malicious event
classification,” in International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2018.

[6] Rich Caruana, “Multitask learning,” Mach. Learn., vol.
28, no. 1, pp. 41–75, July 1997.

[7] Rajeev Ranjan, Swami Sankaranarayanan, Carlos D
Castillo, and Rama Chellappa, “An all-in-one convo-
lutional neural network for face analysis,” in Automatic
Face & Gesture Recognition (FG), 2017 12th IEEE In-
ternational Conference on. IEEE, 2017, pp. 17–24.

[8] Tianzhu Zhang, Bernard Ghanem, Si Liu, and Naren-
dra Ahuja, “Robust visual tracking via multi-task sparse
learning,” in Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), 2012,
pp. 2042–2049.

[9] Xiao-Tong Yuan, Xiaobai Liu, and Shuicheng Yan, “Vi-
sual classification with multitask joint sparse represen-
tation,” IEEE Transactions on Image Processing, vol.
21, no. 10, pp. 4349–4360, 2012.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei, “Imagenet: A large-scale hierar-
chical image database,” in Proceedings of the IEEE
conference on computer vision and pattern recognition
(CVPR), 2009, pp. 248–255.

[11] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean, “Distributed representations of
words and phrases and their compositionality,” in

Advances in neural information processing systems
(NIPS), 2013, pp. 3111–3119.

[12] Khurram Soomro, Amir Roshan Zamir, and Mubarak
Shah, “UCF101: A dataset of 101 human actions
classes from videos in the wild,” arXiv preprint
arXiv:1212.0402, 2012.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR), 2016, pp. 770–778.

[14] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao,
Dahua Lin, Xiaoou Tang, and Luc Van Gool, “Temporal
segment networks: Towards good practices for deep ac-
tion recognition,” in European Conference on Computer
Vision (ECCV). Springer, 2016, pp. 20–36.

[15] Jeffrey Pennington, Richard Socher, and Christopher D.
Manning, “Glove: Global vectors for word representa-
tion,” in Empirical Methods in Natural Language Pro-
cessing (EMNLP), 2014, pp. 1532–1543.

[16] Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov, “Bag of tricks for efficient text classi-
fication,” CoRR, vol. abs/1607.01759, 2016.

[17] Alexandre Salle and Aline Villavicencio, “Incorporat-
ing subword information into matrix factorization word
embeddings,” CoRR, vol. abs/1805.03710, 2018.

[18] Alexandre Salle, Marco Idiart, and Aline Villavicencio,
“Enhancing the lexvec distributed word representation
model using positional contexts and external memory,”
CoRR, vol. abs/1606.01283, 2016.

[19] Alexandre Salle, Marco Idiart, and Aline Villavicencio,
“Matrix factorization using window sampling and neg-
ative sampling for improved word representations,” in
Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), 2016, pp.
419–424.

1462


		2019-03-18T11:13:40-0500
	Preflight Ticket Signature




