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ABSTRACT

Low-latency and low-power implementations of Convolu-
tional Neural Network (CNN) are highly desired for budget-
restricted scenarios. Pruning and Winograd algorithm are
two representative approaches to reduce the computation
complexity of CNNs. Coupling them is very attractive, but
the Winograd transformation removes data sparsity brought
by pruning. In this paper, we present a low-latency sparse-
Winograd CNN accelerator (LSW-CNN) for pruned Wino-
grad CNN models. The ReLU-modified algorithm is em-
ployed to solve the zero refilling issue. Our design ful-
ly leverages the sparsity in both weights and activations,
and thus eliminates all unnecessary computation and cycles.
Moreover, a novel fast mask indexing algorithm for sparse
data compression is developed. Accumulation buffers are s-
caled to reduce the latency brought by irregular serial channel
merging. On VGG-16, experimental results demonstrate that
the latency of LSW-CNN is reduced by 5.1 and 1.7 times,
respectively, compared with state-of-the-art dense-Winograd
and sparse-Winograd accelerators. Besides, the consumed
hardware resource is also significantly reduced.

Index Terms— Convolutional Neural Network, accelera-
tor, sparse, Winograd, low-latency

1. INTRODUCTION

Convolutional Neural Network (CNN) has shown great per-
formance in numerous challenging tasks, such as document
recognition [1] and image classification [2]. However, when
state-of-the-art CNNs achieve significant accuracy improve-
ment [3], their sharply increased requirement for computing
resource makes the implementations more expensive and s-
low on general-purpose processors [4,5]. Hence, many work-
s of CNN accelerators [6–8] have been proposed based on
the Field Programmable Gate Arrays (FPGA) or Application
Specific Integrated Circuit (ASIC) to achieve lower latency,
less energy consumption, and higher flexibility. These plat-
forms are suitable for the deployment of large scale CNNs on
budget-restrict scenario such as edge computing.

On the other hand, many algorithms are proposed to de-
crease the computation complexity of CNN models. Domain
transformation algorithms are employed to reduce the compu-

tation complexity of convolutions, such as Fast Fourier Trans-
form [9], Winograd Algorithm (WinoA) [10], and fast FIR al-
gorithm [11]. For instance, WinoA can reduce the workload
of multiplication by 2.3× [12]. In addition, Han et al. [13]
shows that most connections with insignificant weights are
redundant, and thus up to 95% computations can be elimi-
nated without accuracy loss. Then native pruned Winograd
CNN [14] directly trains and prunes weights in Winograd do-
main, leading to 10× compression rate on Winograd parame-
ters with negligible accuracy loss.

Several CNN accelerators were proposed based on the
above algorithms. However, these designs also have draw-
backs. SCNN [15] improves performance by leveraging all
non-zero values in both activations and weights, but it cannot
take the advantage of arithmetic transformation. Moreover,
the sparse data will result in workload imbalance. In [12] and
[16], architectures for Winograd CNN (Wino-CNN) on FP-
GA were proposed. [17] further presented a design optimized
for native pruned Winograd CNN, while it did not solve the
refilling issue of activations. Besides, its indexing scheme
brings excessive implementation overhead, leading to higher
hardware consumption than that of Wino-CNN.

In this paper, we propose a low-latency sparse-Winograd
CNN accelerator (LSW-CNN), in which the ReLU-modified
algorithm [18] is employed to tackle the zeros refilling issue.
Our design fully exploits sparsity of both weights and acti-
vations, and thus eliminates all unnecessary computations.
A fast mask indexing algorithm is developed to efficiently
access sparse data, since it achieves the optimal memory
footprint and indexing speed. Moreover, we use scaled ac-
cumulation buffers followed by adder trees to reduce the
latency brought by irregular serial channel merging. On
VGG-16 [19], the LSW-CNN achieves 5.1× and 1.7× over-
all speedup than state-of-the-art Wino-CNN and SpWA sepa-
rately. Besides, it also achieves 2.0×, 1.4×, 1.7× and 1.6×
saving on DSP, BRAM, LUT and Flip Flop, respectively,
compared with SpWA.

2. WINOGRAD ALGORITHM AND SPARSITY

Naive WinoA. WinoA [20] is a computation complexity re-
duction approach for short convolutions in the signal process-
ing field. Lavin et al. [10] first introduces it to CNNs to re-
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duce the workload. The 2D WinoA is performed on n × n
tiles (denoted by d), which are fetched from H × W input
feature maps with overlaps of (r − 1) × n, and the size of
convolution kernels (denoted by g) is r × r. After the Wino-
grad transformation as shown in Eq. 1, each input tile yields
an m×m output tile (denoted by Y ), where n = m+ r − 1.

Y = AT (GgGT )� (BT dB)A. (1)

A, B, and G denotes post-process, tile-transform, and weight-
transform matrices, respectively. It is noted that � represents
element-wise matrix multiplication (EWMM). So the WinoA
can reduce the number of convolutional multiplications from
m2r2 to n2 at the cost of addition increasing. In this work,
we set r = 3 and m = 2, which means an input activation
needs to be split into 4× 4 tiles with overlapping step of 2.

Naive sparse WinoA. As shown in Eq. 2, if the WinoA is
naively applied to the spare neural network [13], the pruned
g and ReLU-ed d with high sparsity are refilled in because of
the affine transformation G(·)GT and BT (·)B.

Y = AT (GPrune(g)GT )� (BTReLU(d)B)A. (2)

Native Pruned WinoA. As shown in Eq. 3, Li et al. [14]
proposed a native pruned Winograd model, in which the ker-
nel weights are directly trained and pruned in the Winograd
domain without weight transformation,

Y = AT (Prune(Train(g′)))� (BTReLU(d)B)A, (3)

where g′ is the transformed matrix to be learned. This method
can effectively introduce desired sparsity to weights in Wino-
grad domain. However, the sparsity in activations brought by
the inter-layer ReLU function still vanishes due to the domain
transformation BT (·)B.

ReLU-modified WinoA. To further explore the sparsi-
ty in both sides, we employ a ReLU-modified approach as
shown in Eq. 4, in which the ReLU is performed after the tile
transformation in Winograd domain. It achieves significant
workload reduction without accuracy loss.

Y = AT (Prune(Train(g′)))� (ReLU(BT dB))A. (4)

3. SPARSE-WINOGRAD ARCHITECTURE DESIGN

According to the above discussion, the sparse-Winograd C-
NN models are very suitable for energy-efficient CNN im-
plementations in budget-restricted scenarios. However, a s-
parse model will destroy the structured dataflow and result in
performance degradation when implemented on the CNN ac-
celerators that are specifically designed for high-throughput
dense models.

To tackle this problem, we propose an architecture which
is dedicatedly optimized for sparse-Winograd models, by
which CNNs can be processed with low latency and high
hardware efficiency. Besides, the proposed design can also
implement dense models while leveraging the advantage of
WinoA, at the cost of little overhead on the indexing scheme.
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Fig. 1. Illustration on a 4× 4 tile with 37.5% density.

3.1. Index schemes and Fast mask indexing

In order to exploit sparsity in both activations and weights
and reduce memory access, an indexing module is required to
indicate the position of non-zeros. It is noted that this module
will be used frequently through the dataflow. To achieve high
indexing speed and low memory footprint, we propose a fast
mask indexing (FMI) algorithm. As shown in Fig. 1(a), a
sparse 4× 4 tile using typical indexing schemes is illustrated.

Coordinate (COO). COO stores a list of data coordinates
consisting of indices of row and column.

Step Index. In SCNN, to access all data index, the step
indices need to be accumulated serially.

Compressed Sparse Row (CSR). SpWA exploits a vari-
ant of CSR [21], which requires more memory footprint.

Mask Index. This method marks non-zero values using
1-s. Each element only needs 1 bit. As shown in Fig. 1(b),
it can save up to 50% of indexing memory overhead. On the
other hand, the fixed data structure is hardware-friendly to
achieve high-bandwidth memory access. Moreover, mask in-
dex can be easily scaled as the tile size increases, while the
memory requirement of other schemes will grow sharply.

Fast Mask Indexing. However, mask index abandons the
one-to-one correspondence with the value vector, so cycles of
its length are required to sequentially traverse all bits to fetch
the index and corresponding value. In order to accelerate the
value access speed, we propose an FMI algorithm as shown in
Algorithm 1. A mask index vector can be viewed as a 16-bit
binary variable denoted by a. Note that bitwise AND opera-
tion (a&(a−1)) can erase the first 1 from right, so we apply a
low-priority encoder to the input of bit-reversed ã. Hence, in
the i-th cycle, the FMI outputs the coordinate corresponding
to the i-th 1 of a from left. As shown in Fig. 1(b), not only
does it require the minimal memory footprint with 74% over-
head saving than that of [17], but also it achieves the fastest
speed, since only cycles of the number of non-zero values are
required. The architecture of FMI is illustrated in 3(a).
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Algorithm 1: Fast Mask Indexing Algorithm
Input: 16-bit mask index a, value vector v[·];
Output: 1D coordinate b, value, non zero;

1: do ã = bit reverse(a);
2: do non zero = fast bit sum(a);
3: for i = 1 to non zero and ã 6= 0 do
4: value = v[i];
5: b = low priority encoder(ã);
6: ã = ã & (ã− 1);
7: end for

3.2. Architecture Design

Based on the FMI scheme, we propose an LSW-CNN archi-
tecture that can implement both dense and sparse-Winograd
CNN models as shown in Fig. 2. The dataflow mainly con-
tains four processes, which are tiling, transformation, EWM-
M, and post-processing with stitching. Our architecture is
dedicatedly optimized for ReLU-modified model to efficient-
ly exploit the sparsity in both weights and activations.

Memory Hierarchy. Weights of all layers initially stored
in DRAM are in the form of compressed structure, because
they are already trained with sparsity and can be compressed
at the same time. Because the energy of direct memory access
from DRAM is considerable [22], the FMI compressed data
structure can significantly reduce associated energy consump-
tion. Buffers are used between modules to form the inter-
module pipeline, which can balance the latency of each part
of dataflow and thus improve the overall performance.

Tiling and Transformation. For the simplicity of
dataflow, we first apply padding with size of 2 to input acti-
vations instead of 1, so the outside halo of output activations
should be removed. Every input pixel is broadcast to 4 cor-
responding tiles, thus each tile buffer consists of 4 banks to
have the write operations finished in one cycle. Next, each
cycle transform units performs pre-transformation and ReLU
on 4 × 4 tiles as shown in Eq. 4, and indexes them to the
compressed structure in a parallelism of 4, since each trans
buffer is also composed of 4 banks. This intra-channel paral-
lelism is exploited to accelerate data transmission from tiling
to transformation modules.

EWMM. In the EWMM module, the weight broadcast s-
trategy is leveraged to avoid repeated memory access from the
DRAM, so every weight tile is fetched to local buffers of PEs
only once and reused to perform EWMM operations with d-
ifferent activation tiles. As shown in Fig. 3(b), by comparing
the indices of weights and activations and finding the posi-
tion in which both values are non-zero, the EWMM module
eliminates all unnecessary multiplications, thus significantly
reduces the computing resources. However, it should be noted
the nearly random distribution of sparse values may result in
workload imbalance between PEs with synchronous tile ac-
cess, because the fastest PE must wait for the slowest one to
access the next tile of data. Hence, controllers are allocated
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to each PE to read data asynchronously once the multiplica-
tion of two tiles is finished, while it avoids the memory access
conflict that the intra-channel buffer are split to banks corre-
sponding to PEs. As the number of multiplications serially
processed by one PE increases, the imbalance problem will
be rapidly alleviated.

Accumulation. In order to achieve low latency, the inter-
channel parallelism strategy is employed. The computations
related to Cp channels are processed in parallel until reaching
the accumulation buffer, where they are merged to obtain an
output channel. But it is inefficient to use a Cp-width adder
tree to perform the channel accumulation, because the irregu-
lar sparse data structure may result in a lot of idle cycles and
adders. So we allocate a FIFO to each PE, then the accumu-
lation buffer access FIFOs of different channels sequentially.
But when the parallelism Cp is very large, it will take a lot of
cycles. Hence, we provide Ap copies of accumulation buffer,
each of which is connected to Cp/Ap FIFOs, leading to sig-
nificant speedup. Then an Ap-width adder tree is employed
to merge the partial sums.

Post Processing. This module fetches tiles from accu-
mulation buffer to perform the post-transformation and then
stitches them into an output activation using the same storage
structure of input activations. For small models like ResNet-
18, the size of activations can fit in the on-chip memory. Thus
the dataflow forms a inner loop and activations remain in the
on-chip memory for the entire model. But for large models
such as VGGNet, activations are needed to be written to and
restored from the DRAM [15].
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4. EXPERIMENTAL EVALUATION AND
COMPARISON

In this work, we perform functional simulation of the LSW-
CNN using both C and RTL code. Considering that both
Wino-CNN and SpWA are based on the Xilinx ZC706, we
also use the vivado synthesis tool to implement our design
on the same platform for fair comparison. The implementa-
tion of our design can run over the frequency of 250MHz. In
this work, weight and activation values are all quantized in-
to 16-bit fixed point numbers. We explore the design space
and make a tradeoff between memory footprint and speed by
setting the parallelism Cp and Ap to 32 and 16, respectively.

4.1. Sparsity and Workload

It is shown in Fig. 4 that the comparison of four method-
ologies applied to the typical ResNet-18 on ImageNet with
respect to their sparsity and workload of different blocks.
These four methodologies are sparse neural network [13],
naive WinoA [10], native pruned WinoA [14], and ReLU-
modified WinoA [18], which are leveraged in SCNN [15],
Wino-CNN [12], SpWA [17], and our LSW-CNN, respective-
ly. It is noted that the ReLU-modified WinoA reaches to con-
siderable low density in both activations and weights. So the
proposed design can achieves an ultra low workload (8.0%,
17.7%, 28.3%, and 35.5% of conventional CNN, Wino-CNN,
SCNN, and SpWA, respectively). Furthermore, the very few
workload also results in reduced requirements for comput-
ing units, bandwidth, memory access, and storage resources,
which make our architecture more hardware-efficient.
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Fig. 4. Comparison of sparsity and workload on ResNet-18.

4.2. Architecture comparison and Analysis

In budget-restricted scenarios such as edge computing, stric-
t constraints like latency, energy consumption, and hardware
resource must be considered to find an optimal tradeoff dur-
ing the design space exploration. On one hand, the LSW-

Table 1. Architecture comparison
Wino-CNN [12, 17] SpWA [17] Ours

Precision 16bits fixed 16bits fixed 16bits fixed
Board Xilinx ZC706 ZC706 ZC706

Freq. (MHz) 166 166 250
BRAM (Kb) 540x18 732x18 528x18

DSP 532 768 380
LUT 90k 155k 93k

Flip-Flop 92k 153k 96k
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Fig. 5. Latency on VGG-16 with 20% weight density [17]

CNN benefits from the sparse-Winograd model, both weights
and activations are indexed into the compressed structure to
skip unnecessary cycles and associated computing energy. In
contrast, the SpWA only indexes weights, so it cannot skip
the computations of activations with 0 values. On the other
hand, the proposed FMI scheme brings negligible overhead
for computational latency and memory. Moreover, under the
same storage constrain, a highly compressed data structure al-
lows the entire layer stays on-chip and avoid memory access
to DRAM, which are very slow and high energy-consuming.
Hence, the LSW-CNN takes the advantage of both sparse
WinoA and dedicated hardware design, while SpWA main-
ly benefits from the former.

The hardware implementation results of similar architec-
tures and our design are listed in Table. 1. Here, the data of
Wino-CNN on Xilinx ZC706 comes from [17], because [12]
only shows results on Xilinx ZCU102. As shown in Fig. 5, we
compare the latency of these designs on ZC706 using VGG-
16 model with 20% weight density [17]. It is noted that, when
compared with Wino-CNN which is aimed at dense models,
our design reaches 5.1× overall speedup with similar hard-
ware resource consumption. Besides, the LSW-CNN achieves
1.7× latency improvement, and 2.0× DSP, 1.7× LUT, 1.6×
flip-flop and 1.4× BRAM saving than the state-of-the-art Sp-
WA.

5. CONCLUSION

This paper proposes a LSW-CNN architecture, which fully
leverages sparsity in both activations and weights and allevi-
ates the workload unbalance via dedicated hardware design.
It achieves significant speedup and considerable power and
hardware resource savings compared with other state-of-the-
art architectures. Experimental results show that our design is
much more suitable for budget-restricted scenarios.
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