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ABSTRACT 

This paper presents a hardware-oriented memory-limited 

online FastICA algorithm and its hardware architecture and 

implementation for eight-channel electroencephalogram 

(EEG) signal separation. The online algorithm integrates the 

data overlapping, garbage detection, channel permutation, 

and momentum-controlled weight update schemes to 

stabilize the order of the decomposed source signals across 

time. This study also realizes the algorithm into a hardware 

architecture and implementation with a core area of 

1.469x1.469 mm2 in a TSMC 90 nm process. The resulting 

power dissipation for eight-channel EEG signal separation is 

65 mW@100 MHz at 1V. 

Index Terms— Blind signal separation, EEG, component/ 

channel switch, fast independent component analysis 

(FastICA), and hardware implementation. 

1. INTRODUCTION 

Electroencephalogram (EEG) has been widely applied to 

the research to understand human cognition and clinical 

applications. The true neural activities can be obtained by the 

principal component analysis (PCA) and independent 

component analysis (ICA) [1-12]. The goal of ICA is to 

separate the source signals from the mixed signals measured 

by the scalp EEG. Thus, it is possible to remove eye blink 

artifacts and noise originated from non-cerebral activities of 

the EEG signals. That means ICA can separate the useful 

sources from the artifact-contaminated EEG recordings. 

Most of the ICA algorithms use a PC or server to perform 

offline analysis to separate brain and non-brain source signals. 

However, using offline analysis, we have to wait until the end 

of the EEG recording to evaluate task-related EEG dynamics. 

As a result, we cannot judge the activity immediately while 

the EEG recording is undergoing. Several ASIC or FPGA 

implementations of the ICA algorithms have been proposed 

[13-24] to accelerate the ICA processing. Van et al. [18, 22] 

proposed two FastICA-based hardware architectures and 

implementations in an ASIC approach for 8 and 2-16 

channels, respectively. One of the practical problems with 

these hardware implementations is that the independent 

components (ICs) (i.e. the output channels) of the FastICA 

switch from one data window to the next due to the property 

of FastICA and the limited memory size in hardware 

implementation. Thus, it is hard to track the source activities 

over data windows. This study aims to solve this practical and 

important component-switching problem to attain more 

stable component or source activities. We will detail the 

proposed online FastICA algorithm that integrates the four 

schemes and its hardware implementation [19]. First, each 

data window contains overlapped data to stabilize the 

component/channel order. Second, the standard deviation is 

used to distinguish whether the data are feasible, namely 

garbage detection scheme. Third, the channel permutation 

mechanism is used to discriminate the relation between ICs 

generated by the original FastICA algorithm from successive 

data windows. Finally, the momentum-controlled weight 

matrix is updated. The contributions of this study are as 

follows. 1) Present the hardware-oriented memory-limited 

online FastICA algorithm featuring four schemes to resolve 

the component-switching problem of FastICA, 2) Propose the 

corresponding hardware architecture and implementation 

using four computing units (CUs) in a TSMC 90 nm process.  

2. PROBLEM OBSERVATION AND PROPOSED 

ONLINE FASTICA ALGORITHM 

In the ICA research field, the signal-separation process is 

modeled as  

𝐗 = 𝐀𝐒            (1) 

where X and S denote the nxm observed signal matrix and the 

source signal matrix with the vectors {x1, x2, …, xn} and the 

vectors {s1, s2, …, sn}, respectively, and A denotes an nxn 

mixing matrix with elements aij. Note that A and S are both 

unknown and we have to estimate both A and S using X. 

FastICA [1, 2, 4] applies the maximum non-gaussianity 

estimation, so the ICs can be obtained. In other words, after 

estimating WT (i.e., inverse of the matrix A), the ICs can be 

written as 

𝐒 = 𝐖𝑇𝐗                            (2) 

The FastICA algorithm consists of two parts. The first is the 

preprocessing of FastICA used to center and whiten the 

mixed signals. The second part is the fixed-point iteration 

algorithm used to obtain the updated weight by the 

negentropy approximation [1, 2, 4]. Herein, due to the space 

limitation, the detailed equations will be only shown to 

explain how to realize them in hardware in Section 3. 

2.1 Stability of the FastICA Algorithm for the Limited 

Memory Size and Online FastICA Algorithm 

    Fig. 2.1(a) shows the FastICA processing results of the 

mixed signals with a data window length of 640. Fig. 2.1(b) 

shows the simulation results by using the original FastICA 

algorithm with a window length of 128. As can be seen, the 
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stability of the channel order of FastICA across data windows 

is not guaranteed, making the EEG interpretation and 

monitoring difficult. Therefore, we propose an online 

FastICA, as described in Fig. 2.2 and Sections 2.2-2.5, for 

hardware-oriented memory-limited implementation. 

 
(a)                                            (b) 

Fig. 2.1. (a) Offline FastICA results and (b) referenced online 

FastICA results. 
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Fig. 2.2. Flowchart of the online FastICA algorithm. 

2.2 Data Overlapping 

To guarantee a stable IC order across adjacent data 

windows, we use overlapped data, depicted in Fig. 2.3. 
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Fig. 2.3. (a) Offline FastICA processing and (b) online 

FastICA processing utilizing the overlapped data window. 

2.3 Garbage Detection 

Similar to other biomedical signal processing algorithms, 

the ICA algorithm holds the “garbage in, garbage out” (GIGO) 

rule [25, 26]. If the input data contains useless data, the 

training result of the FastICA algorithm may result in useless 

ICs. Therefore, the input data should be examined by the 

garbage detection procedure for each data window before 

training FastICA. Eq. (3) is utilized for the garbage detection.  

max{|�̅�𝑖(1)|, |�̅�𝑖(2)|, … , |�̅�𝑖(𝑚)|} < 𝑘σ�̅�𝑖
 for i = 1, 2, …, n,  (3)  

where  �̅�, k and σ denote centering data, a constant and the 

standard deviation as in (4), respectively. 

σ = √
∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
                                              (4) 

If (3) is not satisfied, the data in the i-th data window will be 

regarded as garbage and the update procedure for the weight 

matrix will be terminated in Fig. 2.2. Otherwise, we have to 

calculate the new weight.  

2.4 Channel Permutation 

A correlation-based permutation mechanism in Fig. 2.4 is 

used. The permutation scheme concept is similar to that of [7]. 

To determine the relationship between the time course of ICs 

generated by the original FastICA algorithm from the 

successive data windows, the absolute correlation matrix R is 

calculated. R is defined as 

𝐑 = [

𝑟1,1 𝑟1,2 ⋯ 𝑟1,𝑛

𝑟2,1 𝑟2,2 ⋯ 𝑟2,𝑛

⋮ ⋮ ⋯ ⋮
𝑟𝑛,1 𝑟𝑛,2 ⋯ 𝑟𝑛,𝑛

]            (5) 

where rp,q denotes the correlation coefficients between the 

ICs of the overlapped data in Fig. 2.4. Using R, the 

permutation matrix for the i-th data window, U, can be 

acquired as 

𝐔 = [

𝑢1,1 𝑢1,2 ⋯ 𝑢1,𝑛

𝑢2,1 𝑢2,2 ⋯ 𝑢2,𝑛

⋮ ⋮ ⋯ ⋮
𝑢𝑛,1 𝑢𝑛,2 ⋯ 𝑢𝑛,𝑛

]            (6) 

where  

𝑢𝑖,𝑗 = {

1, if |𝑟𝑖,𝑗| = max{|𝑟𝑖,1|, |𝑟𝑖,2|, … , |𝑟𝑖,𝑛|} and 𝑟𝑖,𝑗 ≥ 0

−1, if |𝑟𝑖,𝑗| = max{|𝑟𝑖,1|, |𝑟𝑖,2|, … , |𝑟𝑖,𝑛|} and 𝑟𝑖,𝑗 < 0

0, otherwise

 (7) 

Before applying U for permutation, we have to determine 

whether the relationship belongs to one-to-one mapping or 

many-to-one mapping. If the relationship belongs to many-

to-one mapping, the permutation will fail since there is at 

least one IC with the (i-1)-th data window mapped to several 

ICs with the i-th data window. To ensure the one-to-one 

mapping relationship, Eq. (8) has to be satisfied. 
∑ |𝑢𝑖,𝑗| = 1𝑛

𝑖=1     for  𝑗 = 1, 2, . . . , 𝑛.            (8) 

If failure occurs in the channel permutation in Fig. 2.2, the 

previous weight will be adopted. 
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Fig. 2.4. Compute correlations of ICs across data windows.  

2.5 Momentum-Controlled Weight Update 

   Once the channel permutation with success is performed, 

we add a momentum coefficient, r, to update W at each 

processing. We expect the results of the proposed algorithm 

will close to the offline results. Finally, the update formula is 

expressed in (9). We use adjacent W’s to update the overall 

weight matrix W. 
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𝐖0 = [𝐖0,𝑜𝑙𝑑/‖𝐖0,𝑜𝑙𝑑‖
∞

] ⋅ (1 − 𝑟) + [𝐖/‖𝐖‖∞] ⋅ 𝑟          (9) 

where 𝐖0  is the updated weight matrix at current data 

window, 𝐖0,𝑜𝑙𝑑 is the weight matrix at previous data window, 

𝐖 is the weight matrix calculated by the original FastICA 

algorithm at the current data window, and momentum 

coefficient r can be set by the user. 

3. HARWARE ARCHITECTURE 

Fig. 3.1 shows the block diagram of an online FastICA 

hardware architecture for EEG signal processing. Fig. 3.2  

details the computing units (CUs) in Fig. 3.1. The CU uses 

IEEE-754 floating-point computation and the sample size is 

1024. First, the input data are transformed to the floating 

point through the Fixed-to-Floating Converter and stored in 

the data memory (DM). Second, to enhance the stability of 

ICs between adjacent data windows, we use overlapped data 

stored in the DM across windows, advancing at a step size of 

64 data points. Third, data are fetched from the DM to 

perform centering in (10).   

�̅�(𝑖) = 𝑥(𝑖) − 𝐸{𝑥} = 𝑥(𝑖) − (∑ 𝑥(𝑗)1024
𝑗=1 ) >> 10                (10) 

Note that the centering results can be reused by garbage 

detection and centering operation of the original FastICA. 

Fourth, the standard deviation in (4) of each row can be 

calculated via CU1. Then, the processed data is written back 

to DM. If (3) does not meet the threshold, we will ignore this 

calculation and use the previous weight as the calculated 

weight. Otherwise, we have to calculate the new weight. Fifth, 

data are fetched from the DM to calculate covariance in (11) 

by CUs. 

𝐂𝐗 = 𝐸{𝐗𝐗𝑇} =
1

1024

[
 
 
 
�̅�1

𝑇�̅�1 �̅�1
𝑇�̅�2 … �̅�1

𝑇�̅�8

�̅�2
𝑇�̅�1 �̅�2

𝑇�̅�2 … �̅�2
𝑇�̅�8

⋮ ⋮ … ⋮
�̅�8

𝑇�̅�1 �̅�8
𝑇�̅�2 … �̅�8

𝑇�̅�8]
 
 
 

                    (11) 

Sixth, the eigenvalues and eigenvectors are obtained by the 

EVD processor detailed in Fig. 4 of [18]. Then, we use the 

CUs to calculate the whitening data and write back to the DM. 
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Fig. 3.1. Block diagram of the system architecture.  
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Fig. 3.2. Computing unit (CU) architecture and DM. 

Thus, the preprocessing process is completed. Seventh, the 

whitening data fetched from the DM and weight matrix 

register are fed to the four CUs to perform fixed-point 

iteration operation parallel in (12).  
𝐰+ = 𝐸{𝐳[𝑔(𝐰𝑇𝐳)]𝑇} − 𝐸{𝑔′(𝐰𝑇𝐳)}𝐰 = 𝐸{𝐙[tanh(𝐰𝑇𝐙)]𝑇} −
{[1024 − ∑ tanh2(𝐰𝑇𝐳𝑖)]/1024}1024

𝑖=1 𝐰
 
       (12) 

where zi is the i-th column vector of the matrix Z and the 

thirteen-piecewise linear function approximation is adopted 

to calculate the hyperbolic tangent. Then, through Gram-

Schmidt decorrelation and normalization, the resulting data 

are written back to the weight matrix register. We use the 

inner product to check whether the inner product value 

satisfies a convergence threshold or reaches the maximum 

iteration. Eighth, we judge the adjacent waveform relation by 

correlation values in (5)-(8) because FastICA output results 

might switch across calculations. While considering 8 

channels and 4 CUs, the eight channels can be divided into 

two groups for four CUs to obtain 64 correlation coefficients 

for the permutation. After that, we update the momentum-

controlled weight matrix. Finally, the ICs are obtained via 

four CUs. Note that the equations (10), (11) and (12) are the 

same as those in [18] except the sample size.  

4. SIMULATION, IMPLEMENTATION, AND 

COMPARISON RESULTS 

4.1 Online FastICA Algorithm Simulation Result 

In the simulation, the real EEG data were used. Fig. 4.1(a) 

shows the referenced online FastICA results. As can be seen, 

the first row has a noise (red rectangle). Fig. 4.1(b) shows the 

proposed memory-limited online FastICA results, where the 

noise does not exist. The parameters used in this simulation 

are set as follows: the window size is 1,024, the data 

overlapping length is 960, the constant k is 4.7, and the 

momentum coefficient r is 0.05. To show the effect of the 

garbage detection, Figs. 4.2(a) and 4.2(b) show the 2D 

correlations between the weight matrices with/without 

garbage detection, respectively.  

2

+-

Scale

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 

8

7

6

5

4

3

2

1

 

 

 
(a)                                      (b) 

Fig. 4.1. (a) Referenced and (b) proposed online FastICA 

results with EEG data. 

 
(a)                                      (b) 

Fig. 4.2. 2D correlation (a) using garbage detection and (b) 

without garbage detection. 
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As can be seen, when time > 210 sec, the 2D correlation is 

greater than 0.9 with garbage detection. Without garbage 

detection, the 2D correlation is below 0.76 when time > 210 

sec. 

4.2 Software Simulation and Post-layout Simulation 

The simulation result is used to validate the FastICA 

implementation using four CUs. Considering the real eight-

channel EEG signals in Fig. 4.3, the Matlab and post-layout 

simulation waveforms, and the corresponding absolute 

correlation coefficients are shown in Fig. 4.4. The average 

value of the absolute correlation coefficients is 0.8875. For 

mixed-signal case, the average value of the absolute 

correlation coefficients is 0.9615 (herein due to the limited 

space, only the number is expressed rather than to provide 

figures). As a result, the proposed architecture can attain the 

satisfactory blind-source separation with the online stable 

component/channel order under the limited memory size. 

 
Fig. 4.3. Eight-channel EEG signal. 
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(a)                               (b) 

Fig. 4.4. Comparison results of online FastICA using (a) 

Matlab and (b) post-layout simulation for EEG signals. 

 

4.3 Chip Implementation  

This subsection presents the chip implementation and 

layout characteristics. The cell-based design flow with the 

standard cell library in TSMC 90 nm 1P9M CMOS process 

is adopted. Artisan Memory Compiler and Synopsys Design 

Compiler are employed to synthesize the RTL design with the 

constraint of 10 ns. Cadence SOC Encounter is used to place 

and route for the proposed architecture. The layout of the 

proposed chip design is shown in Fig. 4.5, where the 

information is shown in Table I. 

4.4 Comparison and Evaluation Results  

Table I shows a comparison among this work and existing 

FastICA implementations. This table compares whether 

online stable channel order in hardware, the number of 

channels, sample size, speed, power consumption, gate 

counts, computation time, process technology, and 

implementation approaches. It is noted that the proposed 

FastICA architecture achieves high channel-order stability. 

That means the components are stable across time. 
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Fig. 4.5. Layout of hardware-oriented memory-limited online 

FastICA implementation. 

5. CONCLUSIONS 

This work proposed and presented a solution to the 

component/channel-switching problem due to the limited 

memory size constraint of the ASIC-based approach. The 

solution combines data overlapping, garbage detection, 

channel permutation, and momentum-controlled weight 

update schemes. The result from our simulation study 

demonstrated the proposed method is very effective to 

stabilize the component/channel order either in ASIC 

hardware or pure software simulations.  

TABLE I: COMPARISON RESULTS AMONG VARIOUS FASTICA IMPLEMENTATIONS 

 Shyu [16] Van [18]    Roh [20] Yang [21]    Van [22]    C.‐C. [23] Bhardwaj [24] This Work 

Online Stable Channel 
Order in Hardware 

NO NO NO NO NO NO NO YES 

# of Channels/Weight 

Vectors (WVs) 
2 8 16 8 2-16 2 6 8 

Sample Size 3000 256 512 256 512 64000 1024 1024 

Speed (MHz) 50 100 20 11 100 100 240 100 

Power Dissipation (mW) NA 16.35 4.45 0.0816 16.35 4200 0.5703 65.0 

Gates (kilo) NA 272 NA 69.2 401 NA NA 840 

Computation Time (ms) ~3 290 (max) Variable 84.2 (max) 1850 (max) 68.1 NA 150 (max) 

Process Technology (nm) NA 90 130 90 90 NA 90 90 

Implementation Approach FPGA ASIC ASIC ASIC ASIC FPGA+ARM ASIC ASIC 
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