
HARDWARE-ORIENTED MEMORY-LIMITED ONLINE FASTICA ALGORITHM AND

HARDWARE ARCHITECTURE FOR SIGNAL SEPARATION

Lan-Da Van, Senior Member, IEEE, Tsung-Che Lu, and Tzyy-Ping Jung*, Fellow, IEEE, Jo-Fu Wang

Dept. Computer Science, National Chiao Tung University, Hsinchu, Taiwan. ldvan@cs.nctu.edu.tw ; tclu@cs.nctu.edu.tw

*Swartz Center for Computational Neuroscience, University of California, San Diego (UCSD), USA. jung@sccn.ucsd.edu

ABSTRACT

This paper presents a hardware-oriented memory-limited

online FastICA algorithm and its hardware architecture and

implementation for eight-channel electroencephalogram

(EEG) signal separation. The online algorithm integrates the

data overlapping, garbage detection, channel permutation,

and momentum-controlled weight update schemes to

stabilize the order of the decomposed source signals across

time. This study also realizes the algorithm into a hardware

architecture and implementation with a core area of

1.469x1.469 mm2 in a TSMC 90 nm process. The resulting

power dissipation for eight-channel EEG signal separation is

65 mW@100 MHz at 1V.

Index Terms— Blind signal separation, EEG, component/

channel switch, fast independent component analysis

(FastICA), and hardware implementation.

1. INTRODUCTION

Electroencephalogram (EEG) has been widely applied to

the research to understand human cognition and clinical

applications. The true neural activities can be obtained by the

principal component analysis (PCA) and independent

component analysis (ICA) [1-12]. The goal of ICA is to

separate the source signals from the mixed signals measured

by the scalp EEG. Thus, it is possible to remove eye blink

artifacts and noise originated from non-cerebral activities of

the EEG signals. That means ICA can separate the useful

sources from the artifact-contaminated EEG recordings.

Most of the ICA algorithms use a PC or server to perform

offline analysis to separate brain and non-brain source signals.

However, using offline analysis, we have to wait until the end

of the EEG recording to evaluate task-related EEG dynamics.

As a result, we cannot judge the activity immediately while

the EEG recording is undergoing. Several ASIC or FPGA

implementations of the ICA algorithms have been proposed

[13-24] to accelerate the ICA processing. Van et al. [18, 22]

proposed two FastICA-based hardware architectures and

implementations in an ASIC approach for 8 and 2-16

channels, respectively. One of the practical problems with

these hardware implementations is that the independent

components (ICs) (i.e. the output channels) of the FastICA

switch from one data window to the next due to the property

of FastICA and the limited memory size in hardware

implementation. Thus, it is hard to track the source activities

over data windows. This study aims to solve this practical and

important component-switching problem to attain more

stable component or source activities. We will detail the

proposed online FastICA algorithm that integrates the four

schemes and its hardware implementation [19]. First, each

data window contains overlapped data to stabilize the

component/channel order. Second, the standard deviation is

used to distinguish whether the data are feasible, namely

garbage detection scheme. Third, the channel permutation

mechanism is used to discriminate the relation between ICs

generated by the original FastICA algorithm from successive

data windows. Finally, the momentum-controlled weight

matrix is updated. The contributions of this study are as

follows. 1) Present the hardware-oriented memory-limited

online FastICA algorithm featuring four schemes to resolve

the component-switching problem of FastICA, 2) Propose the

corresponding hardware architecture and implementation

using four computing units (CUs) in a TSMC 90 nm process.

2. PROBLEM OBSERVATION AND PROPOSED

ONLINE FASTICA ALGORITHM

In the ICA research field, the signal-separation process is

modeled as

𝐗 = 𝐀𝐒 (1)

where X and S denote the nxm observed signal matrix and the

source signal matrix with the vectors {x1, x2, …, xn} and the

vectors {s1, s2, …, sn}, respectively, and A denotes an nxn

mixing matrix with elements aij. Note that A and S are both

unknown and we have to estimate both A and S using X.

FastICA [1, 2, 4] applies the maximum non-gaussianity

estimation, so the ICs can be obtained. In other words, after

estimating WT (i.e., inverse of the matrix A), the ICs can be

written as

𝐒 = 𝐖𝑇𝐗 (2)

The FastICA algorithm consists of two parts. The first is the

preprocessing of FastICA used to center and whiten the

mixed signals. The second part is the fixed-point iteration

algorithm used to obtain the updated weight by the

negentropy approximation [1, 2, 4]. Herein, due to the space

limitation, the detailed equations will be only shown to

explain how to realize them in hardware in Section 3.

2.1 Stability of the FastICA Algorithm for the Limited

Memory Size and Online FastICA Algorithm

 Fig. 2.1(a) shows the FastICA processing results of the

mixed signals with a data window length of 640. Fig. 2.1(b)

shows the simulation results by using the original FastICA

algorithm with a window length of 128. As can be seen, the

1438978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

stability of the channel order of FastICA across data windows

is not guaranteed, making the EEG interpretation and

monitoring difficult. Therefore, we propose an online

FastICA, as described in Fig. 2.2 and Sections 2.2-2.5, for

hardware-oriented memory-limited implementation.

(a) (b)

Fig. 2.1. (a) Offline FastICA results and (b) referenced online

FastICA results.

Whitening

Fixed-Point

Algorithm

Channel

Permutation

Input Data

Success Fail

Output Data

Momentum-

Controlled

Weight Update

Output Data

Generating

YesGarbage

Detection

Centering

Original

FastICA

Algorithm

Data

Overlaping

No

Fig. 2.2. Flowchart of the online FastICA algorithm.

2.2 Data Overlapping

To guarantee a stable IC order across adjacent data

windows, we use overlapped data, depicted in Fig. 2.3.

Time

Entire Window Weight Matrix W

0 T

(a)

2-nd Data Window

1-st Data Window

2-th Weight Matrix W2

(i-1)-th Weight Matrix W1

L-th Weight Matrix WL

Time

(L-1)-th Weight Matrix WL-1(L-1)-th Data Window

L-th Data Window

i-th Weight Matrix Wii-th Data Window

T0
(b)

Fig. 2.3. (a) Offline FastICA processing and (b) online

FastICA processing utilizing the overlapped data window.

2.3 Garbage Detection

Similar to other biomedical signal processing algorithms,

the ICA algorithm holds the “garbage in, garbage out” (GIGO)

rule [25, 26]. If the input data contains useless data, the

training result of the FastICA algorithm may result in useless

ICs. Therefore, the input data should be examined by the

garbage detection procedure for each data window before

training FastICA. Eq. (3) is utilized for the garbage detection.

max{|�̅�𝑖(1)|, |�̅�𝑖(2)|, … , |�̅�𝑖(𝑚)|} < 𝑘σ�̅�𝑖
 for i = 1, 2, …, n, (3)

where �̅�, k and σ denote centering data, a constant and the

standard deviation as in (4), respectively.

σ = √
∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
 (4)

If (3) is not satisfied, the data in the i-th data window will be

regarded as garbage and the update procedure for the weight

matrix will be terminated in Fig. 2.2. Otherwise, we have to

calculate the new weight.

2.4 Channel Permutation

A correlation-based permutation mechanism in Fig. 2.4 is

used. The permutation scheme concept is similar to that of [7].

To determine the relationship between the time course of ICs

generated by the original FastICA algorithm from the

successive data windows, the absolute correlation matrix R is

calculated. R is defined as

𝐑 = [

𝑟1,1 𝑟1,2 ⋯ 𝑟1,𝑛

𝑟2,1 𝑟2,2 ⋯ 𝑟2,𝑛

⋮ ⋮ ⋯ ⋮
𝑟𝑛,1 𝑟𝑛,2 ⋯ 𝑟𝑛,𝑛

] (5)

where rp,q denotes the correlation coefficients between the

ICs of the overlapped data in Fig. 2.4. Using R, the

permutation matrix for the i-th data window, U, can be

acquired as

𝐔 = [

𝑢1,1 𝑢1,2 ⋯ 𝑢1,𝑛

𝑢2,1 𝑢2,2 ⋯ 𝑢2,𝑛

⋮ ⋮ ⋯ ⋮
𝑢𝑛,1 𝑢𝑛,2 ⋯ 𝑢𝑛,𝑛

] (6)

where

𝑢𝑖,𝑗 = {

1, if |𝑟𝑖,𝑗| = max{|𝑟𝑖,1|, |𝑟𝑖,2|, … , |𝑟𝑖,𝑛|} and 𝑟𝑖,𝑗 ≥ 0

−1, if |𝑟𝑖,𝑗| = max{|𝑟𝑖,1|, |𝑟𝑖,2|, … , |𝑟𝑖,𝑛|} and 𝑟𝑖,𝑗 < 0

0, otherwise

 (7)

Before applying U for permutation, we have to determine

whether the relationship belongs to one-to-one mapping or

many-to-one mapping. If the relationship belongs to many-

to-one mapping, the permutation will fail since there is at

least one IC with the (i-1)-th data window mapped to several

ICs with the i-th data window. To ensure the one-to-one

mapping relationship, Eq. (8) has to be satisfied.
∑ |𝑢𝑖,𝑗| = 1𝑛

𝑖=1 for 𝑗 = 1, 2, . . . , 𝑛. (8)

If failure occurs in the channel permutation in Fig. 2.2, the

previous weight will be adopted.

Overlapped Data

Overlapped Data

Overlapped Data

Overlapped Data Overlapped Data

Overlapped Data

Overlapped Data

Overlapped Data

ICs of (i-1)-th Data Window ICs of i-th Data Window

Fig. 2.4. Compute correlations of ICs across data windows.

2.5 Momentum-Controlled Weight Update

 Once the channel permutation with success is performed,

we add a momentum coefficient, r, to update W at each

processing. We expect the results of the proposed algorithm

will close to the offline results. Finally, the update formula is

expressed in (9). We use adjacent W’s to update the overall

weight matrix W.

0 100 200 300 400 500 600 700
-1

0

1

0 100 200 300 400 500 600 700
-1

0

1
x 10

-5

0 100 200 300 400 500 600 700
-5

0

5

0 100 200 300 400 500 600 700
-2

0

2

0 100 200 300 400 500 600 700
-2

0

2

0 100 200 300 400 500 600 700
-5

0

5

0 100 200 300 400 500 600 700
-5

0

5

0 100 200 300 400 500 600 700
-5

0

5

0 100 200 300 400 500 600 700
-1

0

1
x 10

-5

0 100 200 300 400 500 600 700
-5

0

5

0 100 200 300 400 500 600 700
-5

0

5

0 100 200 300 400 500 600 700
-5

0

5

0 100 200 300 400 500 600 700
-5

0

5

0 100 200 300 400 500 600 700
-5

0

5

0 100 200 300 400 500 600 700
-5

0

5

0 100 200 300 400 500 600 700
-5

0

5

1439

𝐖0 = [𝐖0,𝑜𝑙𝑑/‖𝐖0,𝑜𝑙𝑑‖
∞

] ⋅ (1 − 𝑟) + [𝐖/‖𝐖‖∞] ⋅ 𝑟 (9)

where 𝐖0 is the updated weight matrix at current data

window, 𝐖0,𝑜𝑙𝑑 is the weight matrix at previous data window,

𝐖 is the weight matrix calculated by the original FastICA

algorithm at the current data window, and momentum

coefficient r can be set by the user.

3. HARWARE ARCHITECTURE

Fig. 3.1 shows the block diagram of an online FastICA

hardware architecture for EEG signal processing. Fig. 3.2

details the computing units (CUs) in Fig. 3.1. The CU uses

IEEE-754 floating-point computation and the sample size is

1024. First, the input data are transformed to the floating

point through the Fixed-to-Floating Converter and stored in

the data memory (DM). Second, to enhance the stability of

ICs between adjacent data windows, we use overlapped data

stored in the DM across windows, advancing at a step size of

64 data points. Third, data are fetched from the DM to

perform centering in (10).

�̅�(𝑖) = 𝑥(𝑖) − 𝐸{𝑥} = 𝑥(𝑖) − (∑ 𝑥(𝑗)1024
𝑗=1) >> 10 (10)

Note that the centering results can be reused by garbage

detection and centering operation of the original FastICA.

Fourth, the standard deviation in (4) of each row can be

calculated via CU1. Then, the processed data is written back

to DM. If (3) does not meet the threshold, we will ignore this

calculation and use the previous weight as the calculated

weight. Otherwise, we have to calculate the new weight. Fifth,

data are fetched from the DM to calculate covariance in (11)

by CUs.

𝐂𝐗 = 𝐸{𝐗𝐗𝑇} =
1

1024

[

�̅�1

𝑇�̅�1 �̅�1
𝑇�̅�2 … �̅�1

𝑇�̅�8

�̅�2
𝑇�̅�1 �̅�2

𝑇�̅�2 … �̅�2
𝑇�̅�8

⋮ ⋮ … ⋮
�̅�8

𝑇�̅�1 �̅�8
𝑇�̅�2 … �̅�8

𝑇�̅�8]

 (11)

Sixth, the eigenvalues and eigenvectors are obtained by the

EVD processor detailed in Fig. 4 of [18]. Then, we use the

CUs to calculate the whitening data and write back to the DM.

Computing Unit 3

Input

Data

Output

Data

Fixed-to-

Floating

Converter

Data

Memory

Computing Unit 4

M
U
X

Computing Unit 2

Computing Unit 1

EVD

Processor

Controller

M
U
X

Register

D
E
M
U
X

M
U
X

Fig. 3.1. Block diagram of the system architecture.

Data

Memory

Computing

Unit 4

1/
R

E

G

R

E

G

R

E

G

R

E

G

Computing

Unit 3

Computing

Unit 2

Computing

Unit 1

Fig. 3.2. Computing unit (CU) architecture and DM.

Thus, the preprocessing process is completed. Seventh, the

whitening data fetched from the DM and weight matrix

register are fed to the four CUs to perform fixed-point

iteration operation parallel in (12).
𝐰+ = 𝐸{𝐳[𝑔(𝐰𝑇𝐳)]𝑇} − 𝐸{𝑔′(𝐰𝑇𝐳)}𝐰 = 𝐸{𝐙[tanh(𝐰𝑇𝐙)]𝑇} −
{[1024 − ∑ tanh2(𝐰𝑇𝐳𝑖)]/1024}1024

𝑖=1 𝐰

 (12)

where zi is the i-th column vector of the matrix Z and the

thirteen-piecewise linear function approximation is adopted

to calculate the hyperbolic tangent. Then, through Gram-

Schmidt decorrelation and normalization, the resulting data

are written back to the weight matrix register. We use the

inner product to check whether the inner product value

satisfies a convergence threshold or reaches the maximum

iteration. Eighth, we judge the adjacent waveform relation by

correlation values in (5)-(8) because FastICA output results

might switch across calculations. While considering 8

channels and 4 CUs, the eight channels can be divided into

two groups for four CUs to obtain 64 correlation coefficients

for the permutation. After that, we update the momentum-

controlled weight matrix. Finally, the ICs are obtained via

four CUs. Note that the equations (10), (11) and (12) are the

same as those in [18] except the sample size.

4. SIMULATION, IMPLEMENTATION, AND

COMPARISON RESULTS

4.1 Online FastICA Algorithm Simulation Result

In the simulation, the real EEG data were used. Fig. 4.1(a)

shows the referenced online FastICA results. As can be seen,

the first row has a noise (red rectangle). Fig. 4.1(b) shows the

proposed memory-limited online FastICA results, where the

noise does not exist. The parameters used in this simulation

are set as follows: the window size is 1,024, the data

overlapping length is 960, the constant k is 4.7, and the

momentum coefficient r is 0.05. To show the effect of the

garbage detection, Figs. 4.2(a) and 4.2(b) show the 2D

correlations between the weight matrices with/without

garbage detection, respectively.

2

+-

Scale

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

8

7

6

5

4

3

2

1

(a) (b)

Fig. 4.1. (a) Referenced and (b) proposed online FastICA

results with EEG data.

(a) (b)

Fig. 4.2. 2D correlation (a) using garbage detection and (b)

without garbage detection.

2

+-

Scale

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

8

7

6

5

4

3

2

1

0 50 100 150 200 250
0.7

0.75

0.8

0.85

0.9

0.95

Time (sec)

2
-D

 C
o
rr

e
la

ti
o
n

0 50 100 150 200 250
0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Time (sec)

2
-D

 C
o
rr

e
la

ti
o
n

1440

As can be seen, when time > 210 sec, the 2D correlation is

greater than 0.9 with garbage detection. Without garbage

detection, the 2D correlation is below 0.76 when time > 210

sec.

4.2 Software Simulation and Post-layout Simulation

The simulation result is used to validate the FastICA

implementation using four CUs. Considering the real eight-

channel EEG signals in Fig. 4.3, the Matlab and post-layout

simulation waveforms, and the corresponding absolute

correlation coefficients are shown in Fig. 4.4. The average

value of the absolute correlation coefficients is 0.8875. For

mixed-signal case, the average value of the absolute

correlation coefficients is 0.9615 (herein due to the limited

space, only the number is expressed rather than to provide

figures). As a result, the proposed architecture can attain the

satisfactory blind-source separation with the online stable

component/channel order under the limited memory size.

Fig. 4.3. Eight-channel EEG signal.

0.9907

0.9964

0.9748

0.7945

0.9729

0.6016

0.9210

0.8477

NWMM

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-100

0

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-50

0

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-50

0

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-50

0

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-50

0

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-50

0

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-50

0

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-50

0

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-100

0

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-50

0

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-50

0

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-50

0

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-50

0

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-50

0

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-50

0

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-50

0

50

(a) (b)

Fig. 4.4. Comparison results of online FastICA using (a)

Matlab and (b) post-layout simulation for EEG signals.

4.3 Chip Implementation

This subsection presents the chip implementation and

layout characteristics. The cell-based design flow with the

standard cell library in TSMC 90 nm 1P9M CMOS process

is adopted. Artisan Memory Compiler and Synopsys Design

Compiler are employed to synthesize the RTL design with the

constraint of 10 ns. Cadence SOC Encounter is used to place

and route for the proposed architecture. The layout of the

proposed chip design is shown in Fig. 4.5, where the

information is shown in Table I.

4.4 Comparison and Evaluation Results

Table I shows a comparison among this work and existing

FastICA implementations. This table compares whether

online stable channel order in hardware, the number of

channels, sample size, speed, power consumption, gate

counts, computation time, process technology, and

implementation approaches. It is noted that the proposed

FastICA architecture achieves high channel-order stability.

That means the components are stable across time.

Data

Mem
EVD

Processor

Computing Unit

and Register

Fig. 4.5. Layout of hardware-oriented memory-limited online

FastICA implementation.

5. CONCLUSIONS

This work proposed and presented a solution to the

component/channel-switching problem due to the limited

memory size constraint of the ASIC-based approach. The

solution combines data overlapping, garbage detection,

channel permutation, and momentum-controlled weight

update schemes. The result from our simulation study

demonstrated the proposed method is very effective to

stabilize the component/channel order either in ASIC

hardware or pure software simulations.

TABLE I: COMPARISON RESULTS AMONG VARIOUS FASTICA IMPLEMENTATIONS

 Shyu [16] Van [18] Roh [20] Yang [21] Van [22] C.‐C. [23] Bhardwaj [24] This Work

Online Stable Channel
Order in Hardware

NO NO NO NO NO NO NO YES

of Channels/Weight

Vectors (WVs)
2 8 16 8 2-16 2 6 8

Sample Size 3000 256 512 256 512 64000 1024 1024

Speed (MHz) 50 100 20 11 100 100 240 100

Power Dissipation (mW) NA 16.35 4.45 0.0816 16.35 4200 0.5703 65.0

Gates (kilo) NA 272 NA 69.2 401 NA NA 840

Computation Time (ms) ~3 290 (max) Variable 84.2 (max) 1850 (max) 68.1 NA 150 (max)

Process Technology (nm) NA 90 130 90 90 NA 90 90

Implementation Approach FPGA ASIC ASIC ASIC ASIC FPGA+ARM ASIC ASIC

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2000

4000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2000

4000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2000

4000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2000

4000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2000

4000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2000

4000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2000

4000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2000

4000

1441

6. REFERENCES
[1] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for independent

component analysis,” Neural Computation, vol. 9, pp. 1483–1492,

1997.
[2] A. Hyvärinen, “Fast and robust fixed-point algorithms for independent

component analysis,” IEEE Trans. Neural Networks, vol. 10, pp. 626–
634, May [19]

[3] 9.

[4] T. W. Lee, Independent Component Analysis: Theory and Applications.
Boston, MA: Kluwer, 1998.

[5] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component

Analysis. New York: Wiley, 2001. Vigario, “Extraction of ocular
artifacts from EEG using independent component analysis,”

Electroencephalogr. Clin. Neurophysiol., vol. 103, pp. 395–404, 1997.

[6] R. Vigario, J. Sarela, V. Jousmaki, M. Hamalainen, and E. Oja,
“Independent component approach to the analysis of EEG and MEG

recordings,” IEEE Trans. Biomed. Eng., vol. 47, pp. 589–593, May

2000.
[7] L. Vigon, M. R. Saatchi, J. E. W. Mayhew, and R. Fernandes,

“Quantitative evaluation of techniques for ocular artefact filtering of

EEG waveforms,” IEE Proceedings-Science, Measurement and
Technology, vol. 147, no. 5, pp. 219-228, 2000.

[8] G. Wang, N. N. Rao, Z. L. Zhang, Q. Mo, and P. Wang, “An extended

online Fast-ICA algorithm,” In Proc. International Symposium on
Neural Networks, pp. 1109-1114, May 2006, Springer, Berlin,

Heidelberg.

[9] A. Kachenoura, L. Albera, L. Senhadji, and P. Comon, “ICA: A
potential tool for BCI systems,” IEEE Signal Process. Mag., vol. 25,

no. 1, pp. 57–68, Jan. 2008.

[10] R. Vigario, and E. Oja, “BSS and ICA in neuroinformatics: from
current practices to open challenges,” IEEE Reviews in Biomedical

Engineering, vol. 1, pp. 50-61, 2008.

[11] B. Sallberg, N. Grbic, and I. Claesson, “Complex-valued independent
component analysis for online blind speech extraction,” IEEE Trans.

Audio, Speech, and Language Processing, vol. 16, no. 8, pp. 1624-

1632, Nov. 2008.
[12] S. H. Hsu, T. R. Mullen, T. P. Jung, and G. Cauwenberghs, “Real-time

adaptive EEG source separation using online recursive independent

component analysis,” IEEE Trans. Neural Systems and Rehabilitation
Engineering, vol. 24, no. 3, pp. 309–319, Mar. 2016.

[13] C. M. Kim, H. M. Park, T. Kim, Y. K. Choi, and S. Y. Lee, “FPGA

implementation of ICA algorithm for blind signal separation and
adaptive noise canceling,” IEEE Trans. Neural Networks, vol. 14, no.

5, pp. 1038–1046, Sep. 2003.

[14] C. Charoensak and F. Sattar, “A single-chip FPGA design for real-time

ICA-based blind source separation algorithm,” in Proc. IEEE Int. Symp.

on Circuits and Systems, vol. 6, pp. 5822-5825, May 2005.

[15] H. Du, H. Qi, “A reconfigurable FPGA system for parallel independent
component analysis,” EURASIP Journal on Embedded Systems, vol.

2006, 12 pages, 2006.

[16] K. K. Shyu, M. H. Lee, Y. T. Wu, and P. L. Lee, “Implementation of
pipelined FastICA on FPGA for real-time blind source separation,”

IEEE Trans. Neural Networks, vol. 19, Jun. 2008.

[17] W. C. Huang, S. H. Hung, L. D. Van and C. T. Lin,” FPGA
Implementation of 4-channel ICA for on-line EEG signal separation.”

In Proc. IEEE BioCAS., pp. 65-68, Nov. 2008
[18] L. D. Van, D. Y. Wu, C. S. Chen, "Energy-efficient FastICA

implementation for biomedical signal separation", IEEE Trans. on

Neural Networks, vol. 22, no. 11, pp. 1809-1823, Nov. 2011.
[19] Jo-Fu Wang, Design and Implementation of a Hardware-oriented

Online FastICA Algorithm, Master Thesis, National Chiao Tung

University, 2013. (Advisor: Lan-Da Van)
[20] T. Roh, K. Song, K., H. Cho, D. Shin, and H. J. Yoo,, “A wearable

neuro-feedback system with EEG-based mental status monitoring and

transcranial electrical stimulation,” IEEE Trans. Biomedical Circuits
and Systems, vol. 8, no. 6, pp. 755-764, Dec. 2014.

[21] C. H. Yang, Y. H. Shih, H. Chiueh, “An 81.6uW FastICA processor

for epileptic seizure detection,” IEEE Trans. Biomedical Circuits and
Systems, vol. 9, no. 1, pp. 60-71, Feb. 2015.

[22] L. D. Van, P. Y. Huang, and T. C. Lu, “Cost-effective and variable-

channel FastICA hardware architecture and implementation for EEG
signal processing,” Journal of Signal Processing Systems, vol. 82, issue

1, pp. 91-113, Jan. 2016.

[23] F. Carrizosa‐Corral, A. Vazquez‐Cervantes, J. R. Montes, T.
Hernandez‐Diaz, J. C. Solano Vargas, L. Barriga‐Rodriguez, J. A.

Soto-Cajiga, H. Jimenez‐Hernandez, “FPGA‐SoC implementation of

an ICA‐based background subtraction method,” International Journal
of Circuit Theory and Applications, vol. 46, pp. 1703-1722, Apr. 2018.

[24] S. Bhardwaj, S. Raghuraman, and A. Acharyya, “Simplex FastICA: An

accelerated and low complex architecture design methodology for nD
FastICA,” IEEE Trans. Very Large Scale Integration (VLSI) Systems,

to appeared in 2019.

[25] J. Onton, M. Westerfield, J. Townsend, and S. Makeig, “Imaging
human EEG dynamics using independent component analysis,”

Neuroscience and Biobehavioral Reviews, vol. 30, no. 6, 2006.

[26] S. Hoffmann, “Independent component analysis of ocular artifacts,”
Ph.D. dissertation, Faculty of Psychology, Ruhr-University Bochum,

Germany, 2009.

1442

		2019-03-18T11:05:01-0500
	Preflight Ticket Signature

