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ABSTRACT
This paper focuses on the classical additive noise signal restoration
problem. The proposed time domain denoising method iteratively
removes outliers. The proposed denoising filter incorporates a
threshold operation to determine which sample values are outliers.
This method is compared with wavelet soft/hard thresholding and
empirical mode decomposition interval thresholding. The proposed
method is shown to be a promising method to denoise signals where
a frequency decomposition may not be a robust representation of
the noise free signal. The paper provides a discussion on threshold
selection and proposes future work to include applying noise
estimation to automatically determine thresholds, possible stopping
(convergence) criteria, and possible inclusion of an weighted mean
computation to improve denoising performance.

Index Terms— Denoising, nonlinear filtering, time domain
methods

I. INTRODUCTION

The classic signal restoration problem [1] is to determine the
ideal signal x(n) from the detected signal y(n) given by the
additive model

y(n) = p(n) ∗ x(n) + η(n) (1)

where p(n) denotes the impulse response of the data acquisition
system, the asterisk (∗) represents linear convolution, and η(n) is
a random process. The noise samples η(n) are generally assumed
to be white and Gaussian distributed. Moreover, the noise is
typically assumed to be independent of x(n). Generally, there
is an unmentioned assumption that the noise is a wide sense
stationary process. In the models given in equation (1), the distorted
signal is modeled as a convolution by an impulse response, p(n).
This distortion is usually a blurring or smoothing of the desired
signal. Thus, the impulse response of the data acquisition system
is modeled as a low pass filter. This paper will not focus on the
restoration of the adverse effects of p(n), i.e. deconvolve. Rather
the focus of the paper is to remove or reduce the additive noise, i.e.
denoise. Thus, the problem addressed in this paper is to extract the
noise free signal x(n) from an acquired noisy signal y(n) modeled
as

y(n) = x(n) + η(n). (2)

Previously proposed solutions to the additive noise signal restora-
tion problem given in equation (2) include linear filtering such as
a moving average and Weiner filtering [2], non-linear filters such
as various adaptive median and regression filters [3], [4], wavelet
thresholding [1], etc. Since white noise has a constant spectrum,

the current state of the art denoising ideology is to decompose
the noisy signal into various subbands. A thresholding of each
subband decomposed signal provides beneficial denoising [5]–[7].
The subband decomposition that is widely used is the wavelet
decomposition. A newer subband decomposition method is the
Empirical Mode Decompositon (EMD). The current state of the
art wavelet and EMD denoising methods will be evaluated in this
paper along with the proposed novel approach.

The recently published Iterative Truncated Mean (ITM) and
weighted ITM (WITM) filters [8]–[10] have sparked a reinvestiga-
tion on the usefulness of computing the arithmetic mean to replace
noisy samples. The proposed method in this paper approaches the
classical signal reconstruction problem modeled in equation (2)
by combining an outlier removal method, which was originally
suggested by Abreu et al. in [11], with thresholding into the
arithmetic mean filtering process. Provided the noise is stationary,
zero mean, Gaussian, independent, and a random process, the
proposed reconstruction method will be shown as a promising
method in removing noise and increasing the Signal to Noise Ratio
(SNR).

II. EMPIRICAL MODE DECOMPOSITION
The EMD with Interval Thresholding (IT) denoising method

proposed in [13] applies a thresholding operation to the EMD
intrinsic mode signals. The EMD for 1D signals provides a spectral
analysis method for non-linear and non-stationary signals. [14] The
EMD decomposes a signal into Intrinsic Mode Functions (IMFs).
Each IMF is the result of the sifting process, which attempts to
satisfy the following two conditions:

1) The number of zero crossings and the number of local
extrema must be the same or off by at most one.

2) The mean defined by the average of the local maxima envelop
and local minimum envelop must be zero.

After an IMF is found, the residue function is determined by
subtracting the IMF from the previous residue. The EMD iterates
by extracting another IMF from the current residue. Precisely, let
y(n) be some 1D signal and yi(t) be the i-th IMF where i ∈ Z+.
The i-th IMF yi(t) is determined by a iterative sifting process of the
residue function ri−1(n) where r0(n) = y(n). The sifting process
of some generic function y(n) is

1) determine the maximum envelop by a spline interpolation of
the local maxima, dy(n)e;

2) determine the minimum envelop by a spline interpolation of
the local minima, by(n)c;

3) the mean signal is ȳ(n) = dy(n)e − by(n)c;
4) subtract ȳ(n) from y(n), ŷ(n) = y(n)− ȳ(n);
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5) if ŷ(n) satisfies the two IMF conditions, then the iteration
stops and ŷ(n) defines the IMF of y(n). Otherwise, repeat
the sifting process for y(n) = ŷ(n).

The first residue is defined as

r1(n) = y(n)− y1(n).

For other i 6= 1 the residue ri(n) is

ri(n) = ri−1(n)− yi(n).

The results in [13] shows that robust noise reduction can be
achieved by applying IT to each EMD IMF. For each IMF yi(n)
IT is defined as

byi(n) =

8<:
ey(n) if |yi(n)| > Ti and n = ne

0 if |yi(n)| ≤ Ti and n = ne

yi(n) otherwise
(3)

where yi(ne) is an extremum, eyi(n) is an interpolated version of
yi(n) within an interval about n, and threshold values Ti > 0. The
noise free signal is approximated by adding all the noise removed
IMFs with the last residue

by(n) =
X

i

byi(n) + ri(n).

III. THE PROPOSED DENOISING METHOD

Fig. 1. The result of SBF denoising (red) from a noisy signal
(black).

The publications of the ITM and WITM have provided evidence
in the robustness of iteratively applying a threshold operation(s)
to the mean or weighted mean filters on windowed samples to
reduce noise. The proposed time domain method iteratively replaces
samples that are determined as outliers with the local arithmetic
mean. The outliers are identified as samples either greater than
or less than some threshold values. The 2D version of the outlier
denoising method, referred to as the Squeeze Box Filter (SBF),
was proposed in [15]. It was shown to provide a reliable method to
contrast enhance ultrasound images, while preserving major image
edges. A 1D example of the SBF is shown in Fig. 1. The original
noisy signal is shown in Fig. 1 as the black plot. The result of
the SBF applied to the original noisy signal in Fig. 1 is shown
as the red plot. The red plot indicates that almost all the noise
has been removed. However, the peaks and valleys of the ideal
signal are adversely diminished. Thus, the 1D SBF would not be
considered as robust method in denoising by any metric. To improve
the denoising performance of the SBF thresholding modifications
were incorporated into the SBF algorithm to alleviate the problem
of peak and valley removal.

The SBF with thresholds (SBFT) algorithm is iteratively applied
as follows. Let y(n) be a length N noisy signal.

1) Set iteration indices i, j = 0 and yi,j(n) = y(n).

2) Set iteration limits λ1, λ2 > 0, thresholds Ti,1, Ti,2 ≥ 0 for
i = 0, 1, 2, . . . , λ2, and convergence criteria ε > 0.

3) Each iteration j (j starts at one) begins by determining the
set of locations of local maxima (peaks) and local minima
(valleys). The locations of these extrema are defined by the
set

NE = {n | yi,j−1(n) meets condition 1 or 2 }

Condition 1: yi,j−1(n) > yi,j−1(n−1) and yi,j−1(n) >
yi,j−1(n + 1)
Condition 2: yi,j−1(n) < yi,j−1(n + l) and yi,j−1(n) <
yi,j−1(n + 1)

4) Without using the local extrema values, samples within an odd
length L window centered at yi,j−1(n) are used to determine
the local mean. These extrema maybe replaced with the local
mean values. That is for n ∈ NE the local mean is computed
as:

ȳi,j−1(n) =
1

L − 1

0B@
0B@ bL

2 cX
l=−bL

2 c
yi,j−1(n + l)

1CA − yi,j−1(n)

1CA
where b·c is the greatest integer function.

5) The minimum and maximum values within the length L
window centered at yi−1(n) are determined

m = min

„
yi,j−1(n + l)

˛̨̨̨
l = 0,±1,±2,±

—
L

2

�ff«
and

M = max

„
yi,j−1(n + l)

˛̨̨̨
l = 0,±1,±2,±

—
L

2

�ff«
.

6) The outlier maybe replace according to

yi,j(n) =

8<: yi,j−1(n) if |M −m| ≥ Ti,1 or
|ȳi,j−1(n)− yi,j−1(n)| ≥ Ti,2

ȳi,j−1(n) otherwise.

7a) If j < λ1 and convergence in the Cauchy sense is not attained,
that is

N−1X
n=0

|yi,j−1(n)− yi,j(n)| > ε, (4)

then j is incremented by one and another iteration, starting
from Step 3, is performed.

7b) If j = λ1 or Cauchy convergence, contrary to equation (4), is
attained, then when i < λ2, i is incremented by one, j = 0,
and

yi,j(n) = yi−1,λ1(n) ∗ h(n)

where h(n) is a low pass filter. The process continues starting
at Step 3.

Step 8: The algorithm stops when i = λ2. An approximation of the
noise free signal is produced as

by(n) = yλ2,λ1(n).

Clearly like the ITM and WITM denoising method, the robust-
ness of the proposed SBFT method is dependent on the choices
of thresholds Ti,1, Ti,2, stopping criteria parameters (ε, λ1, and
λ2), and window length L. The threshold values Ti,1 and Ti,2

should be dynamically adjusted at each iteration. The threshold
values should be based on the standard deviation of the noise.
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(a) PR (blue) and noisy (black) signals
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(b) Ideal Wavelet
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(c) EMD-IT
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(d) Proposed SBFT
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(e) PP (blue) and noisy (black) signals
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(h) Proposed SBFT
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(i) BL (blue) and noisy (black) signals
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(k) EMD-IT
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(l) Proposed SBFT
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(m) DP (blue) and noisy (black) signals
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(n) Ideal Wavelet
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(o) EMD-IT
0 100 200 300 400 500 600 700 800 900 1000

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(p) Proposed SBFT

Fig. 2. Noise free (blue) PR, PP, BL, DP, and noisy signals (black) and results (red) from various denoising techniques.
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Table I. SBFT Parameters
PR PP BL DP

λ1 3 45 30 2
T0,1 21 70 4 0.34
T0,2 18 60 2 0.35
T1,1 12 40 2.4 0.29
T1,2 5 25 1.4 0.13

The noise standard deviation decrease as the iterations increase.
Thus, an incorporation of a noise estimation method would be
required for a fully automated denoising method. The choices for
stopping criteria should be based on the benefits of further iterations
and signal degradation. Allowing to many iterations would remove
the peaks and valleys of the true noise free signal. Of course
not allowing a sufficient number of iterations would not provide
beneficial denoising results. Since motivation of this paper is to
provide insight on the proposed time domain denoising technique
versus subband decomposition, namely wavelet and EMD transform
denoising methods, the noise estimation step at the beginning of
each iteration and the possible use of a weighted mean are omitted
and left for future research. The stopping criteria and window
lengths parameters should allow be carefully investigated and also
left for future research. All parameters of the proposed SBFT
denoising method are empirical set in the following experiment.

IV. EXPERIMENTS AND RESULTS
Experiments to compare the various wavelet, EMD-IT, and

proposed SBFT methods were performed. The wavelet-ST, wavelet-
HT, ideal wavelet methods were from the WaveLab [16] library
of Matlab functions. Four WaveLab noise free signals used were
Piece-Regular (PR), Piece-Polynomial (PP), Blocks (BL), and
Doppler (DP). All four signals are length 1024. These signals were
generated by the WaveLab MakeSignal.m function. Gaussian noise
with standard deviations (σ) of 5, 5, 1, and 0.1 were added to PR,
PP, BL, and DP, resp. to create the noisy version.

The quadrature mirror filter bank in the wavelet transform used
a length 8 Daubechies wavelet. Both the wavelet-ST and wavelet-
HT used a four level (five subbands) decomposition. The Donoho
threshold was applied in the HT and ST operations. The ideal
wavelet denoising method uses the noise free signal to adjust
the threshold. The ideal wavelet denoising method is included in
these experiments for the sake of providing an upper bound on an
attainable SNR of the wavelet threholding denoising methods.

The EMD-IT employed a HT operations to the IMF decompo-
sition. The threshold parameters of EMD-IT in equation (3) were
manually optimized using a greedy search method to provide the
largest possible SNR.

The proposed SBFT method used a length L = 9 window to
perform the local averaging in Step 4. The convergence parameter
in equation (4) is set to ε = 0.01 and iteration parameter λ2 = 2.
The iteration parameter λ1 and the threshold parameters used in
the proposed SBFT to denoise each signal are given in Table I and
were determined from a greedy search. The low pass filter in Step
7b was a simple three point averaging filter.

The SNR of the denoised signal is used to evaluate the perfor-
mance of each method. The SNR of a restored or noisy signal by(n)
is defined as

SNR {by} = 20 log10

„
‖x‖

‖x− by‖
«

dB

Table II. Quantitative SNR (dB) Improvements
WaveLab Signal

Method PR PP BL DP
unprocessed 11.30 10.49 10.05 9.65
wavelet-ST 12.24 16.13 9.61 11.42
wavelet-HT 18.05 12.61 14.89 18.31

EMD-IT 18.26 16.24 16.48 18.51
SBFT 20.50 18.53 19.64 16.37

Ideal Wavelet 22.83 18.71 19.59 20.58

where ‖ · ‖ denotes the l2-norm and x(n) is the noise free signal.
The SNRs of the noisy signal and each denoising method tested in
these experiments are given in Table II. The ideal wavelet method,
which requires the noise free signal as an input, provided the best
SNR in all but the BL signal. In general the wavelet-ST, wavelet-
HT, and EMD-IT does provide significant denoising improvements
with an increase in SNR over the unprocessed SNR in all cases
except the wavelet-ST degraded the SNR in the BL signal. The
proposed SBFT provides over 2 dB improvement over the wavelet-
ST, wavelet-HT, and EMD-IT methods in restoring the PR and
PP signals and over 3 dB improvements in restoring the BL signal.
The SNR of the proposed SBFT method is about 2 dB less than the
wavelet-HT method and the EMD-IT method in denoising the DP
signal. Thus, the DP example provides evidence that the wavelet-
HT and EMD-IT are more robust when the signal is strictly band
limited. The other cases are evidence that SBFT could achieve
better performance than the subband decomposition methods. The
results of each restoration method applied to the four tested signals
are shown in Fig. 2.

V. CONCLUSION

An overview of the wavelet HT, wavelet-ST, and EMD-IT
methods is provided. The wavelet and EMD-IT methods rely on
a subband decomposition and subsequent thresholding operation
(HT, ST, or IT) to restore a signal corrupt with additive noise.
The SBFT incorporates a thresholding operation into the SBF
algorithm to preserve a signal’s peaks and valleys, while the
additive noise is being reduced. Experiments using the length 1024
PP, PR, BL, and DP signals were performed. The results of these
experiments show the proposed SBFT is capable of in excess of 2
dB SNR improvement over the wavelet-ST, wavelet-HT, and EMD-
IT methods on the PR, PP, and BL signals. In the PP restoration the
SBFT nearly attained the same SNR as the ideal wavelet method.
In the BL example the SNR of SBFT exceeds the SNR of the
ideal wavelet method and provided over 3 dB improvement over
the other methods. When restoring the band limited DP signal,
the SBFT did not perform on par with wavelet-HT and EMD-IT
where the subband decomposition may have been advantageous.
These experiments provide evidence that the SBFT may be a
more robust denoising method than subband decomposition based
methods with certain signals. In addition to more comprehensive
testing, an automated threshold(s) selection method, which will
incorporate noise estimation, and the possible use of a weighted
mean are in the works.
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