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ABSTRACT

Multi-task learning aims to enhance the performance of a model
by inductive transfer of information among tasks. However, joint
optimization of multiple tasks is challenging due to unbalanced data
ranges and variations in task difficulties which can cause the model
to converge only for a single task which has large values. To address
these problems, we propose a novel weighting scheme based on val-
idation loss. The proposed weighted scheme is evaluated on three
datasets, including publicly available Comma.ai and Udacity bench-
mark dataset and GTA-V dataset. Our experiments demonstrate the
superior performance of the proposed approach compared to the cur-
rent state-of-the-art methods.

Index Terms— Deep Learning, Adaptive Task Weights, Convo-
lutional Neural Network (CNN), Autonomous Driving

1. INTRODUCTION

A human can learn multiple tasks at a time and multitasking ca-
pability can be achieved by prioritizing difficult tasks over easy
tasks [1]. Like humans, intelligent machines or models can also
learn multi-tasks by training on multiple tasks simultaneously and it
is frequently used in several applications, including natural language
processing [2], computer vision [3] and speech signal processing [4].
However, when model trained in such a manner to perform multi-
tasks, easy tasks can dominate learning by ignoring harder tasks.
This posed an important question: what is the right balance be-
tween learning of multiple tasks from easy versus hard tasks? To
address the problem a diverse domain, multi-tasks learning can be
categorized into two approaches: i) task weighting or ii) sharing
information between the linked tasks.

In task weighting scheme, the objective function is obtained by
assigning weights, automatically or via external human supervision,
to each task according to their difficulty level and task weights [5].
Consideration of task difficulty and uncertainty is a major challenge
in this approach [6]. In [7], the authors proposed an altering scheme
to switch between task ordering and instance ordering and trained
task-specific model in a single iteration without gradient descent.

Information sharing schemes among the tasks share common
features but maintain separate task-specific modules. This can be
categorized into hard parameter sharing, soft parameter sharing and
task-hierarchy. In parameter sharing approaches, [8] is a seminal
work, able to predict segmentation, pose estimation and human de-
tection. In [9], researcher proposed a hierarchical approach by su-
pervising easier tasks at lower layers and harder tasks at later layers.
A critical assumption in multi-tasks learning is that the underlying

distribution across all the tasks remains the same. However, this
assumption is broken when defining a multi-task problem over dy-
namic tasks. On the other hand, parameter sharing can lead to a
critical layer responsible for learning representations of discrimina-
tive downstream tasks. Further, the selection of the representation
layer is difficult for a dynamic multi-task problem.

Autonomous vehicle control has grasped substantial research
and commercial attention in the last couple of years. It requires ef-
fective digital control of steering, acceleration and braking systems
for safe driving. Estimation of these parameters requires the un-
derstanding of the surrounding environment, under various lighting
and weather conditions, and dynamic range of tasks makes it chal-
lenging. Many proposed methods estimate a single parameter such
as only steering angle from one or more images [10, 11]. In [12],
researchers proposed three end-to-end deep learning architectures
including CNN with a fully convolutional network (CNN+FCN),
CNN with attention mechanism (CNN+Attention) and CNN with
LSTM cells (CNN+LSTM). In [13], the researcher explored trans-
fer learning, 3D LSTM, and baseline model (Predict zero) on Udac-
ity [14] dataset for estimation of steering angle. In [15], an end-to-
end deep learning model using LSTM and CNN+LSTM architec-
tures was proposed. similarly, [12] introduced attention mechanism
and proposed three end-to-end deep learning architectures including
CNN+FCN, CNN+Attention, and CNN+LSTM. These techniques
addressed single task learning problem, however, learning of multi-
ple tasks using a single model is a challenging and unexplored area.

MultiNet [16] combined classification, detection and segmenta-
tion in a single architecture. It is based on ResNet [17] and consists
of three shared encoding layers followed by task independent decod-
ing layers. They used a softmax cross-entropy for segmentation and
classification and a sum of absolute differences for four values of the
bounding box prediction. The different losses were naively summed
together to achieve the combined loss.

In this paper, we propose a solution for task weighting scheme
to predict multiple outputs present in a scenario. In addition to the
weighting scheme, we propose a multi-task architecture with soft
weight sharing technique by observing shared information among
the tasks. Our scheme is encouraged to prioritize harder tasks over
easier tasks. Empirically, we evaluate the proposed method on re-
gression problem to predict steering angle, acceleration and brake
simultaneously using the publicly available Comma.ai [18], Udac-
ity [14] datasets. Further, we generated synthetic dataset in a gaming
environment (GTA-V) and tested in a live gaming environment.
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Fig. 1. Proposed Model for the MTL problem.

2. PROPOSED METHOD

We propose an adaptive weighting scheme in addition to a CNN
based deep architecture containing shared layers as well as task
independent layers for Multi-Task Learning (MTL). The proposed
scheme assign more weights to the harder tasks and use previous
validation loss to determine relative task difficulties. To evaluate
the proposed model and task weighting scheme, we apply MTL
to autonomous driving and show that the task weighting scheme
influence the performance of an individual task by prioritizing the
tasks which require more training iterations to be learned.

2.1. Weighting Scheme

Training a model for multitasking problem with unbalanced data
ranges can converge a model for only a single class which has large
values. In such cases, optimizer tries to minimize the largest error
in loss function and converges in that direction which decreases the
significance of other parameters.

2.1.1. Objective Function

Let x = {xi|i = 1, 2, ..., N} is the set of input images from train-
ing samples and yDi = {yDi |i = 1, 2, ..., N} is the set of cor-
responding labels of x. Where N is the total number of training
samples. For the ease of presentation of network parameters, we de-
fine W = {W1,W2, ...,WL} and B = {B1,B2, ...,BL}, where
Wl and Bl are the weights and biases. Let ρ denotes weights (W)
and bias (B) as combined parameters. In order to learn all param-
eters, apart from minimizing the combined loss, we propose objec-
tive function as LD = min

(∑
j ωθjLθj (x, ρ)

)
, where ωθj is the

weighting factor that defines the contribution of the jth individual
task and Lθj is the individual loss function for the jth task. We used
Mean Squared Error (MSE) as Loss function/Objective function and
it can be formulated as:

(1)LD = min
(∑

j

ωθj
1

β

β∑
i=1

(θji − θ̂
j
i )

2
)

For the estimation of multiple tasks (ŷD), we trained the pro-
posed model with three different configurations of class weights.

• Scheme I: In the first configuration, the proposed model is
trained for all tasks with an equal weighting scheme (ωθj ).
This approach can over-fit the training for a task which has
large values as the goal of the objective function is to mini-
mize the cumulative loss of three tasks.

Table 1. Summary of state-of-the-art autonomous driving datasets
used for evaluation of the proposed method.

Comma.ai Udacity GTA-V
Frames 522,434 39,422 700,000
FPS 20Hz 20 Hz 20 Hz
Hours 7.25 hrs 8 hrs 194 Hz
Condition Highway/Urban Urban Highway/Urban
Location CA/USA CA/USA CA/USA
Lighting Day/Night Day Day

• Scheme II: In the second configuration, we assign adaptive
weighting factors to individual task by obtaining the initial
weights from the first configuration. Let Lj,vθ is the final vali-
dation loss obtained from the first configuration. Using these
validation losses, weighting factors for objective function are
computed as ωθj = 1

Lj,v
θ

. This configuration assigns an

equal loss to each individual task and minimization of com-
bined loss tries to converge the model for each equally. This
scheme introduces task specific weighting. Minimization of
combined loss tries to converge the model for tasks which
were not better learned during Scheme 1.

• Scheme III: In third configuration, hard weighting scheme is
applied as ωs = 0.1, ωa = 0.2 and ωb = 0.7 for driving
control tasks. These weighting factors are found empirically
by observing the range and statistics of the datasets.

The proposed model is trained for all three configurations and
influence of weighting factor is analyzed later in Section 3.1 which
shows that the adaptive weighting scheme (scheme II) supersedes all
its alternatives.

2.1.2. Optimization and Weights Update

We employed commonly used Stochastic Gradient Descent (SGD)
method to obtain the network parameters, W and B, of the proposed
model. Let the model has L + 1 layers where (L + 1)-th layer
denotes the regression layer and l-th layer is an intermediate layer.
Output of regression layer hL+1(xi), feature layer hL(xi) and any
intermediate layer hl(xi) can be computed as:

(2)hL+1(xi) = ΨL+1(WL+1hL(xi)) + BL+1

(3)hL(xi) =
ΨL(WLhL−1(xi)) + BL

||ΨL(WLhL−1(xi)) + BL||2
(4)hl(xi) = Ψl(Wlhl−1(xi)) + Bl

where xi is given input, ΨL+1 is the regression function and Ψl is
an activation function.

Gradients of objective function LD with respect to weights
(WL+1,WL) and (WL,BL) can be computed as:

(5)
∂LD
∂Wl

=
∂

∂W l

∑
j

ωθj
2

β

N∑
i=1

∇lhθ
j

L−1(xi)
T

(6)
∂LD
∂Bl

=
2

β

(∑
j

ωθj

β∑
i=1

∇l
)

where∇ is the gradient. SGD computes gradients for multiple sam-
ples, mini-batch size β, instead of computing the gradients for each
step. Updated learning parameters can be computed as:

∇L+1 = hL+1(xi)− yi (7)
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Table 2. Comparison of validation loss (MSE) of all three weighted
loss schemes.

Dataset Scheme Steering angle Acceleration Brake Torque Speed

Comma.ai
I 310 0.024 747 - -
II 304 0.011 710 - -
III 324 0.022 736 - -

Udacity
I 0.004 - - 0.021 0.419
II 0.002 - - 0.015 0.395
III 0.004 - - 0.017 0.412

GTA-V
I 1.698 - - 1.206 0
II 1.238 - - 1.115 0
III 1.724 - - 1.192 0

Table 3. Evaluation of estimation of steering angle in terms of MAE
and SD on Comma.ai dataset [18].

MODEL MAE SD
CNN+FCN [12] 2.54 3.19
CNN+LSTM [12] 2.58 3.44
CNN+ATTENTION(λ = 0) [12] 2.52 3.205
CNN+ATTENTION (λ = 10) [12] 2.56 3.51
CNN+ATTENTION (λ = 20) [12] 2.44 3.20
CNN [19] 2.42 3.26
PROPOSED 1.106 1.65

∇L = WT
L+1∇L+1 �Q(OL(xi))Ψ

′(OL(xi)) (8)

∇l = WT
l+1∇l+1 �Ψ′(Ol(xi)), l = 1, 2, .., L− 1 (9)

where Q and O are intermediate functions used to simplify the equa-
tions, which can be formulated as:

(10)
Q(OL(xi)) ,

I

||ΨL(OL(xi))||2

− ΨL(OL(xi))ΨL(OL(xi))
T

||ΨL(OL(xi))||32

Ol(xi) , Wlhl−1(xi) + Bl, l = 1, 2, · · · , L (11)

where I denotes an identity matrix. Updating rule for model param-
eters (W,B) using the SGD can be defined as:

Wl := Wl − η
∂LD
∂Wl

, l = 1, 2, .., L (12)

Bl := Bl − η
∂LD
∂Bl

, l = 1, 2, .., L (13)

where η is the learning rate. Adam optimizer is used for adap-
tive learning rate decay with early stopping criterion selected em-
pirically.

To effectively handle overfitting, we propose an adaptive learn-
ing rate algorithm. We define a learning rate decay mechanism as:
ηt+1 = k × ηt, where ηt and ηt+1 are the current epoch t and the
next epoch t+1 learning rates, and k is the learning rate decay factor.
We assign η0 = 0.001 and ηmin = 0.0001 as initial and minimum
learning rates. After a certain number of epochs, validation loss may
start increasing while training loss is still decreasing. This trend in-
dicates model over-fitting. Therefore, we propose an early stopping
criterion for the model training to avoid overfitting. Learning rate
ηt+1 is decayed with a factor of k if validation loss does not decrease
for n epochs, where n = 5 is used in our experiments. If the learning
rate approaches its lower bound, and validation loss does not further
decrease, early stopping criteria will stop further training.

2.2. Proposed CNN based MTL Architecture

MTL in deep learning architectures is performed by introducing lay-
ers that are common to all the tasks. There are two important ques-
tions to be answered here i) when and how such parameter sharing

Table 4. Evaluation of estimation of the driving parameter (steering
angle) in terms of RMSE on Udacity dataset [14].

MODEL RMSE
PREDICT ZERO [13] 0.2076
3D LSTM [13] 0.1123
TRANSFER [13] 0.0709
PREDICT ZERO [15] 0.2077
PREDICT MEAN [15] 0.2098
ALEXNET [15] 0.1299
VGG-16 [15] 0.0948
ST-CONV + CONVLSTM +LSTM [15] 0.0609
PILOTNET 0.0986
AUTOPILOT 0.0831
PROPOSED 0.0595

could improve model and ii) what is the right balance between shared
and task-specific parameters. In this work, we show that such induc-
tive transfer can improve the model when the multiple tasks trained
under a unified objective function with a specified task weighting
scheme. We input the data to the multiple separate but identical
branches. Each task-specific branch consists of three convolutional
blocks followed by a flattening layer and final regression layer as
shown in Fig. 1. By sharing initial layers of the model across the
tasks, training examples force the parameters to be generalized in
a manner such that model more compelling towards good weights
yielding a better generalization of the learned parameters. Further-
more, the proposed architecture contains 2.4 times less number of
trainable parameters as compared to PilotNet [11].

3. RESULTS AND DISCUSSION

3.1. Weighting Scheme Analysis

We evaluate our proposed approach on three data sets, including
Comma.ai [18], Udacity [14] and GTA−V (see also Table. 1). Re-
sults on all three datasets are summarized in Table 2. It can be seen
that the weighting scheme II (adaptive weighting) outperforms the
other two schemes on all three datasets. In weighting scheme II the
weighting factors were computed by taking the inverse of final val-
idation loss (MSE) computed from previous training when a same
unit weighting factor was assigned to each class. This introduced
normalization among individual losses and eliminated the undesired
bias due to a non-uniform range of values. A graphical comparison
of all three weighting schemes is shown in Fig. 3. It can be seen that
the proposed weighting scheme (II) comparatively converges more
rapidly as well as this scheme has lower validation loss, which shows
that the credibility of the proposed method.

Fig. 2. Normalized validation losses of each driving parameter for
the proposed multi-task model with configuration I (left), II (center),
III (right) on Comma.ai dataset [18].
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Fig. 3. Visualization of deep features extracted from activation lay-
ers of the proposed model.

3.2. Comparison with state-of-the-art models

Table 3 compares the performance of the proposed model and state-
of-the-art models for a single driving parameter (steering angle) on
Comma.ai dataset [18]. In [12], researchers proposed CNN+FCN
model and evaluated their approach on Comma.ai dataset [18] for
just a single task (steering angle) and achieved 2.44 and 3.20 MAE
(mean absolute error) and standard deviation. In [12], researchers
proposed a simple baseline end-to-end deep learning model and
achieved 2.42 MAE with 3.26 standard deviation. In contrast to
these approaches, our proposed method surpass these state-of-the-
art models and achieved 1.106 MAE with 1.65 standard deviation.
All compared approaches trained the models as single task problem
whereas we solve this problem as multitask problem and our model
predicts not only steering angle but two additional parameters.

In [13], the researcher used transfer learning, 3D LSTM, and
baseline model (Predict zero) for a single task estimation. In 3D
LSTM model, they tried to find saliency maps by feeding a video
clip to the model and they find a change in saliency features in a
sequence of frames and utilized these changes by collapsing mul-
tiple saliency maps as an image to map steering angle from these
collapsed saliency maps. Using this approach, they achieved 0.1123
RMSE. In the transfer learning approach, they used ResNet50 pre-
trained model and utilized saliency maps in the same manners as
discussed earlier. Using the transfer learning model, they achieved
0.0709 RMSE on the test dataset. Another CNN+LSTM architec-
tures proposed in [15] achieved 0.0609 RMSE. In the transfer learn-
ing approach, they achieved 0.948 RMSE on Udacity dataset. They
compared their approach with two blind prediction schemes, Pre-
dict zero (always predict zero) and Predict mean (always predict
mean). In contrast, our proposed model and task weighting scheme
outperform all reported state-of-the-art models by achieving 0.0505
RMSE. In addition to that, our proposed model not only predict
steering angle but also predict two additional driving parameters
without affecting the performance of steering angle.

We also retrained PilotNet [11] and Autopilot [18] models
for only single task (steering angle) on Udacity dataset [14] and
achieved 0.0986 and 0.0831 RMSE for PilotNet [11] and Autopi-
lot [18] models, respectively. In contrast, our MTL model out-
performs all reported state-of-the-art models by achieving 0.0505
RMSE. In addition to that, our proposed model not only predict
steering angle but also predict two additional driving parameters
without affecting the performance of steering angle. Further, we
observed that initial common layers learn common features of tasks

such as road shape, lane markings and traffic as shown in Fig. 3.
Visualization of activations on a query image supports the proposed
soft sharing CNN architecture as sharing soft features among all the
tasks can increase the performance of the model and also reduce the
model complexity.

4. CONCLUSIONS

In this paper, we propose a task weighting scheme and soft parameter
sharing for multi-task learning. Effect of task weighting scheme and
the architecture of the proposed model encourages the learning of a
dynamic range of multi-tasks. The proposed method is applied in the
autonomous driving domain to simultaneously estimate steering an-
gle, brake and acceleration using video frames captured by forward
looking camera. Experiments are performed on two publicly avail-
able datasets: Comma.ai [18] and Udacity [14]. In addition to that,
a new dataset has also been proposed using GTA-V gaming envi-
ronment. In conclusion, we showed that training a single multi-task
model with the proposed task weighting scheme can achieve com-
petitive performance as compared to state-of-the-art methods. We
believe our results provide useful insights in both the research and
application of single-task and multi-task learning.
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