
REAL-TIME OBJECT DETECTION VIA PRUNING AND A CONCATENATED
MULTI-FEATURE ASSISTED REGION PROPOSAL NETWORK

Kuan-Hung Shih, Ching-Te Chiu, Yen-Yu Pu

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

ABSTRACT
Object detection is an important research area in the field

of computer vision. Its purpose is to find all objects in an
image and recognize the class of each object. Since the de-
velopment of deep learning, an increasing number of stud-
ies have applied deep learning in object detection and have
achieved successful results. For object detection, there are
two types of network architectures: one-stage and two-stage.
This study is based on the widely-used two-stage architecture,
called Faster R-CNN, and our goal is to improve the inference
time to achieve real-time speed without losing accuracy.

First, we use pruning to reduce the number of parameters
and the amount of computation, which is expected to reduce
accuracy as a result. Therefore, we propose a multi-feature
assisted region proposal network composed of assisted multi-
feature concatenation and a reduced region proposal network
to improve accuracy. Assisted multi-feature concatenation
combines feature maps from different convolutional layers
as inputs for a reduced region proposal network. With our
proposed method, the network can find regions of interest
(ROIs) more accurately. Thus, it compensates for loss of ac-
curacy due to pruning. Finally, we use ZF-Net and VGG16 as
backbones, and test the network on the PASCAL VOC 2007
dataset.

Index Terms— Object Detection, Convolutional Neuron
Network Compression, Pruning, Region Proposal Network
(RPN), Feature Maps Concatenation

1. INTRODUCTION

Object detection is an important field in computer vision,
which is a key to understanding an image. With more and
more convenient mobile devices, there are abundant images
and video clips collected every day. It is valuable to obtain
information from these data, but it is difficult for humans
to process them efficiently. Therefore, we can utilize object
detection to help us. Recently, deep learning has developed
rapidly, especially with recent successes in image processing
using convolutional neural networks (CNNs)[1][2][3]. Object
detection can leverage the CNN to improve object recognition
performance[4]. There are numerous applications relying on
object detection techniques that are beyond the scope of our
discussions.

The first CNN based object detection algorithm was R-
CNN (Region-based Convolutional Neural Network)[5], and
after some evolution, Faster R-CNN[6] has become one of
the more popular object detection models. Faster R-CNN is
a two-stage object detection method, where two-stage means
finding regions of interest (ROIs) followed by ROI prediction.
An important contribution in Faster R-CNN is the Region
Proposal Network (RPN) to find all ROIs. Although Faster R-
CNN is faster than previous R-CNN versions [5][7], it cannot
achieve real-time performance. One of the reasons is that the
RPN generates many ROIs, and every ROI has to go through
various fully connected layers and classifiers. Another reason
is large input image size. ROIPooling is an operation intro-
duced in Fast R-CNN[7] that uses max pooling to crop and
resize the feature maps for each ROI. Therefore, every ROI
has its own representative feature map. However, after sev-
eral pooling layers, the dimensions of feature maps become
too small, so that two ROIs at the same location but with dif-
ferent sizes have similar feature maps. To prevent this issue,
the input image size has to be large enough, where image size
is set to 600× 1000 in general.

Our work aims to solve the speed issue to allow Faster
R-CNN to achieve real-time performance. Modern networks
[1][2] use abundant parameters, which require not only exces-
sive storage space but increased computation, so we evaluate
our method on these types of networks. Intuitively, we can
use pruning to reduce the number of parameters. Therefore,
we can solve the storage and computation issues simultane-
ously. However, pruning means deleting some filters, which
implies information loss. Hence, it is not surprising that the
accuracy drops. With our proposed model, we can have the
object detection system lightweight and accurate.

2. RELATED WORK

2.1. Pruning

Many parameters in the CNN model are thought to be re-
dundant, and we can safely remove their associated weights.
There are many researches studies on how to find the candi-
dates to prune, ensuring model size and the required compu-
tation can be reduced.

Early pruning works focus on removing connections. Op-
timal Brain Damage[8] use the Taylor expansion to rank the

1398978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

importance of weights, and [9] uses absolute values to eval-
uate importance. Recently, researchers prune entire filters,
and there are two types of methods: data-independent, and
data-dependent. Data-independent methods directly analyze
values of filters, for instance, [10] sums up the absolute value
of all weights in a filter and ranks its importance. In contrast,
data-dependent methods analyze activation values. [10] uses
activation means, and [11] uses the Taylor expansion to eval-
uate activation. [12] and [13] consider interactions between
filters, and they use LASSO regression to find candidates.

2.2. Object Detection

Since the development of deep learning, more studies have
applied deep learning in object detection and have achieved
successful results. For object detection, there are two types
of network architectures: one-stage, and two-stage. The
one-stage architecture assumes that objects are located every-
where, and it directly predicts the classes of objects. Compar-
ing the two architectures, the one-stage architecture directly
predicts all results, while the two-stage architecture predicts
results on an ROI–by-ROI basis. Therefore, one-stage is
faster than two-stage; however, two-stage is more accurate
than one-stage because the ROIs are carefully selected.

3. PROPOSED ARCHITECTURE

In our proposed method, there are three major blocks:
pruning, reduced RPN, and assisted multi-feature concatena-
tion. The overall architecture is shown in Figure 1, and each
block will be discussed in the following sections.

Fig. 1: Overall architecture, which includes pruning, reduced
RPN, and assisted multi-feature concatenation.

3.1. Pruning

Our work aims to make the model small and fast. First,
we analyze both the number of parameters and the amount
of computation. Reducing the number of parameters in both
convolution and fully connected layers helps to achieve the
goal. In this work, we use pruning to decrease model size and
speed up inferencing.

3.1.1. Convolution

Owing to larger input feature maps, shallower convolution
contributes most in terms of computation. It is more efficient
to prune at shallower convolutional layers than deeper convo-
lutional layers. We use the pruning method proposed in [12]
to prune our model. Both models are compressed by approx-
imately 50% regarding the convolutional part.

3.1.2. Fully Connected Layers

A fully connected layer connects all hidden units together.
Therefore, there are many more parameters in fully connected
layers than in convolutional layers. To mitigate inference
computation, we refer to [9] to prune fully connected lay-
ers. We consider that weights with small values have less
importance. The sixth fully connected layer (FC6) is pruned
to 854 and 1024 for ZF-Net and VGG16, respectively, and the
compression rate of all fully connected layers for ZF-Net and
VGG16 are 21% and 25%, respectively.

3.2. Reduced Region Proposal Network

RPN is the most significant improvement from Fast R-
CNN[7] to Faster R-CNN[6]. When we study the RPN, we
find that RPN is a simple sub-network. Although the sub-
network is very simple, it greatly influences accuracy. In both
the training phase and testing phase, the detection model re-
lies on the RPN to generate ROIs. If the RPN cannot generate
ROIs accurately, the detection model will receive many neg-
ative samples. Consequently, there are no useful samples fed
to the detection model, and it will have difficulty converging
during training. The reduced RPN is shown in Figure 2.

Fig. 2: Architecture of reduced RPN.

3.2.1. Compression

Our work is to accelerate and compress the model in object
detection as much as possible, so we also try to make RPN
smaller. There is only one convolution in RPN and the num-
ber of channels is originally set to 256 and 512 for ZF-Net and
VGG16, respectively. However, whether it is necessary to use
the abundant parameters in RPN has not been verified, and we
found that using 64 channels does not harm the accuracy but
does compress the RPN several times. We add a convolutional
layer with 1 × 1 kernel size at the beginning of the reduced

1399

RPN to reduce the input feature channels. To simplify the ar-
chitecture, we make the two convolutional layers in reduced
RPN have a consistent output channel dimension, which is
set to 64 in our proposed architecture. With the compression
strategy we proposed, the reduced RPN uses less than 10%
the number of parameters compared to original RPN, and the
results are shown in Table 1.

Table 1: Comparison of number of parameters between RPN
and Reduced RPN.

parameters RPN
Reduced

RPN
Compression

ZF-Net 590k 53k 9%
VGG16 2359k 70k 3%

3.2.2. Dilated Convolution

Dilated convolution is proposed in [14] and [15], which
focus on semantic segmentation. Reduced RPN is responsi-
ble for predicting an ROI location, which is described by a
bounding box. Looking into the purpose of finding ROIs, it
is similar to the boundary problem in semantic segmentation.
One of the advantages of dilated convolution is increasing the
receptive field, as having a larger receptive field benefits in
recognizing the boundary of each object. Appropriately lever-
aged, this advantage helps to generate more accurate ROIs. In
[14], the authors mention that continuous dilated convolution
enhances accuracy. Therefore, we also apply dilated convolu-
tion on the convolutional layer before the reduced RPN.

3.3. Assisted Multi-Feature Concatenation

In the original Faster R-CNN[6], the input of the RPN
are the feature maps from the last convolutional layer in the
backbone network. However, we believe more informative
feature maps can help reduced RPN to recognize ROIs more
accurately. Therefore, we design assisted multi-feature con-
catenation to provide reduced RPN with more specialized
feature maps. Figure 3 shows the entire assisted multi-feature
concatenation framework and its components. Assisted multi-
feature concatenation is composed of several concatenation
operations: intra-layer concatenation and proposal refine-
ment. The following sections describe all components.

3.3.1. Concatenation
Regarding the feature maps after reduced RPN, we find

that there are two types of feature maps, shape and char-
acter. Some works [16][17] use summation to accumulate
feature maps, but, considering preserving feature maps inde-
pendently, we replace summation with concatenation. At the
same time, concatenation is also more flexible than summa-
tion because it only requires that two inputs have identical
width and height. For these reasons, we use concatenation in
our work when combining of data is needed.

(a) (b)

Fig. 3: Diagram of (a) Intra-Layer Concatenation and (b) Pro-
posal Refinement.

3.3.2. Intra-Layer Concatenation

In VGG16, there are five convolutional blocks in the entire
network, and each block is composed of two or three convo-
lutional layers, which are identical but output different char-
acteristics. Although we believe the last layer has more dom-
inant features, we still expect a positive effect if we take ad-
vantage of all feature maps of each layer. As shown in Figure
3(a), we concatenate all feature maps together within the same
convolutional block. However, if we directly concatenate all
feature maps together, the channels of the output would be
very large. To solve this problem, we apply a convolutional
layer with kernel size 1 first, and the channel dimension of
the output feature maps is adjusted to 16. We then concate-
nate the three sets of feature maps together, and the output
of the intra-layer concatenation is the input of the proposal
refinement block.

3.3.3. Proposal Refinement

The last part of assisted multi-feature concatenation is the
proposal refinement. In [16], boundary refinement is pro-
posed to improve prediction accuracy near a boundary. We
use the same concept to propose a proposal refinement block
to help improve reduced RPN. As shown in Figure 3(b), there
are two convolutional layers in the proposal refinement block,
and the output of the previous intra-layer concatenation is the
input of these two convolutional layers. Because our goal
is to compress the object detection model, we set the chan-
nel dimension of the two convolutional layers in proposal re-
finement to 16, ensuring there is no great difference in the
amount of computation. At the end of proposal refinement
block, considering that the feature maps from the last convo-
lutional layer have more dominant features, we combine the
dominant feature maps with the refined feature maps. Finally,
all outputs of the proposal refinement block are concatenated
and sent to the reduced RPN to generate ROIs.

1400

Table 2: Comparison with other work on PASCAL VOC 2007 dataset.

Method mAP Compression Computation FPS Backbone
[6] (original) 68.7% 100% (523 MB) 100% 9 VGG16
[6] (original) 59.9% 100% (227 MB) 100% 25 ZF-Net

[12] 66.9% 95% (495 MB) 37% 19 VGG16
[18] 67.7% (+0.7%)** 200% 136% – VGG16

Our Pruning 66.5% 29% (55 MB) 25% 26 VGG16
Our Pruning 58.1% 21% (48 MB) 38% 39 ZF-Net

Proposed 69.1% (+2.6%) 27% (144 MB) 23% 27 VGG16
Proposed 60.2% (+2.1%) 20% (45 MB) 34% 40 ZF-Net

** The author re-implemented Faster R-CNN with PyTorch[19], and the baseline is 67.0%.

4. EXPERIMENTAL RESULTS
4.1. Environment and Datasets

The proposed method is implemented in Caffe[20] with a
Python 2.7 interface. The CPU is Intel R© CoreTM i7-7800X
@ 3.5 GHz, the main memory is 32 GB DDR4 RAM and
the GPU is an NVIDIA GeForce R© GTX 1080. In this work,
we verify our proposed method on the PASCAL VOC 2007
dataset[21]. Following the instructions, we use mAP@0.5 to
evaluate accuracy. In this work, all backbone networks are
pre-trained and fine-tuned on ImageNet[22]. In the training
phase, the training iteration is set to 70k, and we use a learning
rate of 0.001 for the first 50k iterations and 0.0001 for the
remaining iterations. Referring to the original paper[6], the
input image is resized such that the shorter side is 600 pixels.

4.2. Results

Table 3: Detection results of adding all modules (ZF-Net).

ZF-Net Baseline[6] Pruning Pruning
Reduced RPN

Pruning
Reduced RPN
Multi-Feature

Compression 100% 21% 20% 20%
Computation 100% 38% 34% 34%

mAP 59.9% 58.1% 59.3% 60.2%

Table 4: Detection results of adding all modules (VGG16).

VGG16 Baseline[6] Pruning Pruning
Reduced RPN

Pruning
Reduced RPN
Multi-Feature

Compression 100% 29% 27% 27%
Computation 100% 25% 23% 23%

mAP 68.7% 66.5% 67.8% 69.1%

We propose three modules: pruning, reduced RPN, and
assisted multi-feature concatenation. Pruning is used to com-
press model size and reduce the amount of computation, but
it negatively affects accuracy. Additionally, pruning on con-
volutional layers and fully connected layers creates different
results. After pruning, we propose the reduced RPN and
assisted multi-feature concatenation to regain the accuracy.

Table 3 and Table 4 show the compression rate, com-
putation ratio, and corresponding accuracy for ZF-Net and

VGG16, respectively. Compared to pruning only and the
baseline, using reduced RPN and assisted multi-feature con-
catenation at the same time can completely compensate for
accuracy loss after pruning. With its comparable accuracy to
the baseline, our model is significantly compressed, and the
amount of computation is also reduced considerably.

4.3. Comparison with Other Work

In this section, we compare our results with other mod-
els, focusing on the work for compression purposes or im-
proving RPN purposes. In Table 2, a comparison between
our experimental results and other works is shown. [18] use
extra fully connected layers to refine RPN iteratively; there-
fore, many more parameters and computations are needed.
Our pruning method further prunes the fully connected layers,
so we achieve a significantly better compression rate com-
pared to [12]. With all of our proposed modules, all accu-
racy can be regained, and 2.6% and 2.1% improvements are
achieved compared to our initial pruning results for VGG16
and ZF-Net, respectively. Compared to original Faster R-
CNN, higher accuracy is achieved for both VGG16 and ZF-
Net, verifying that our proposed method can really help RPN
to find ROIs more accurately and quickly.

5. CONCLUSION

In this work, we first use a pruning technique on Faster
R-CNN to reduce the number of parameters and computa-
tions. As expected, the accuracy drops; therefore, we propose
reduced RPN and assisted multi-feature concatenation to re-
gain the accuracy. With all of our proposed modules, we
can compress ZF-Net from 227 MB to 48 MB, and compress
VGG16 from 523 MB to 144 MB. Regarding speed, ZF-Net
is accelerated from 25 fps to 40 fps, and VGG16 is acceler-
ated from 9 fps to 27 fps. Furthermore, accuracy is improved
from 58.1% to 60.2% and from 66.5% to 69.1% for ZF-Net
and VGG16, respectively. Overall, we successfully achieve
40 fps with image sizes of 600× 1000, which can be used for
real-time applications. All proposed methods are tested on
ZF-Net and VGG16, which are modern CNN architectures,
and thus our method should be applicable to most CNN mod-
els.

1401

6. REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information
processing systems, 2012, pp. 1097–1105.

[2] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” arXiv preprint arXiv:1409.1556, 2014.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[4] Wang Zhiqiang and Liu Jun, “A review of object detec-
tion based on convolutional neural network,” in Control
Conference (CCC), 2017 36th Chinese. IEEE, 2017, pp.
11104–11109.

[5] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jiten-
dra Malik, “Rich feature hierarchies for accurate object
detection and semantic segmentation,” in Proceedings
of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[6] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun, “Faster r-cnn: Towards real-time object detection
with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[7] Ross Girshick, “Fast r-cnn,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp.
1440–1448.

[8] Yann LeCun, John S Denker, and Sara A Solla, “Opti-
mal brain damage,” in Advances in neural information
processing systems, 1990, pp. 598–605.

[9] Song Han, Jeff Pool, John Tran, and William Dally,
“Learning both weights and connections for efficient
neural network,” in Advances in neural information pro-
cessing systems, 2015, pp. 1135–1143.

[10] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf, “Pruning filters for efficient con-
vnets,” arXiv preprint arXiv:1608.08710, 2016.

[11] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz, “Pruning convolutional neural net-
works for resource efficient transfer learning,” CoRR,
abs/1611.06440, 2016.

[12] Yihui He, Xiangyu Zhang, and Jian Sun, “Channel
pruning for accelerating very deep neural networks,” in
International Conference on Computer Vision (ICCV),
2017, vol. 2.

[13] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen,
and Hai Li, “Learning structured sparsity in deep neural
networks,” in Advances in Neural Information Process-
ing Systems, 2016, pp. 2074–2082.

[14] Fisher Yu and Vladlen Koltun, “Multi-scale context
aggregation by dilated convolutions,” arXiv preprint
arXiv:1511.07122, 2015.

[15] Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua
Huang, Xiaodi Hou, and Garrison Cottrell, “Under-
standing convolution for semantic segmentation,” arXiv
preprint arXiv:1702.08502, 2017.

[16] Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo,
and Jian Sun, “Large kernel matters—improve seman-
tic segmentation by global convolutional network,” in
Computer Vision and Pattern Recognition (CVPR), 2017
IEEE Conference on. IEEE, 2017, pp. 1743–1751.

[17] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian D
Reid, “Refinenet: Multi-path refinement networks for
high-resolution semantic segmentation.,” in Cvpr, 2017,
vol. 1, pp. 5168–5177.

[18] Peng Yuan, Yangxin Zhong, and Yang Yuan, “Faster r-
cnn with region proposal refinement,” Tech. Rep., Com-
puter Science Department, Stanford University, 2017.

[19] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer, “Au-
tomatic differentiation in pytorch,” 2017.

[20] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell, “Caffe: Convolutional ar-
chitecture for fast feature embedding,” arXiv preprint
arXiv:1408.5093, 2014.

[21] Mark Everingham, Luc Van Gool, Christopher KI
Williams, John Winn, and Andrew Zisserman, “The
pascal visual object classes (voc) challenge,” Interna-
tional journal of computer vision, vol. 88, no. 2, pp.
303–338, 2010.

[22] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei, “Imagenet: A large-scale hierarchi-
cal image database,” in Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on.
Ieee, 2009, pp. 248–255.

1402

		2019-03-18T10:52:47-0500
	Preflight Ticket Signature

