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ABSTRACT
Machine-learning algorithms are being employed in an in-
creasing range of applications, spanning high-performance
and energy-constrained platforms. It has been noted that the
statistical nature of the algorithms can open up new opportu-
nities for throughput and energy efficiency, by moving hard-
ware into design regimes not limited to deterministic mod-
els of computation. This work aims to enable high accu-
racy in machine-learning inference systems, where computa-
tions are substantially affected by hardware variability. Previ-
ous work has overcome this by training inference model pa-
rameters for a particular instance of variation-affected hard-
ware. Here, training is instead performed for the distribu-
tion of variation-affected hardware, eliminating the need for
instance-by-instance training. The approach is referred to as
Stochastic Data-Driven Hardware Resilience (S-DDHR), and
it is demonstrated for an in-memory-computing architecture
based on magnetoresistive random-access memory (MRAM).
S-DDHR successfully address different samples of stochas-
tic hardware, which would otherwise suffer degraded perfor-
mance due to hardware variability.

Index Terms— Fault tolerance, In-memory Computing,
Machine Learning, Statistical Computing.

1. INTRODUCTION

Traditional system design has been based on deterministic
models of hardware operation. But, hardware operation is
more naturally stochastic, both due to random process vari-
ations and fundamental noise sources in electronic devices.
The focus on deterministic models has required introducing
design margin at every layer of the system stack, to form com-
ponent abstractions where the true stochastic behaviors can be
hidden. Such margining imposes resource overheads (energy,
throughput, area), which are becoming increasingly severe as
inherent stochastic behaviors become more prominent with
technology scaling [1].

In fact, emerging device technologies and emerging com-
pute architectures, which raise the potential for substantial
gains in resource efficiency, are often more significantly af-
fected by stochastic behaviors. For instance, emerging non-
volatile memory devices such as RRAM and MRAM offer
high levels of density and low levels of leakage power; how-
ever, they exhibit degraded separation between storage states

and high variability of the individual states [2][3][4]. Simi-
larly, emerging architectures for in-memory computing have
the potential to overcome memory bottlenecks, by accessing
a computational result over many stored bits, rather than indi-
vidual bits themselves; however, such computation typically
requires increasing dynamic range, degrading computational
SNR under fixed signal-swing constraints [5].

Both the increasing overheads due to margining and the
new opportunities opened by emerging device technologies
and architectures have motivated a departure from determin-
istic models of hardware operation to stochastic models of
hardware operation [6][7]. This paper refers to stochastic
hardware as that where inherent random variations and noise
are not hidden in the abstraction models. Of course, stochas-
tic hardware has important implications on the computations.
Fortunately, emerging workloads from the domains of ma-
chine learning and statistical signal processing can readily in-
corporate the effects of stochastic hardware within the asso-
ciated algorithms, enabling minimal overheads and/or limita-
tions on the algorithms themselves.

As an example, previous work resulted in an approach re-
ferred to as Data-Driven Hardware Resilience (DDHR) [8],
where training of inference-model parameters in a machine-
learning system makes use of a sample of stochastic hard-
ware, so that optimal parameter fitting is achieved not only
to the statistics of application data but also to that sample of
stochastic hardware. This work extends DDHR to stochas-
tic DDHR (S-DDHR), where a stochastic model of hardware
is used so that optimal parameter fitting is achieved not for a
sample of stochastic hardware but rather for the distribution of
stochastic hardware. As a result, the inference-model param-
eters can be trained once for all samples of stochastic hard-
ware. S-DDHR is a general approach, applicable to a range of
stochastic hardware architectures, but it is demonstrated here
for a binarized convolutional neural network (BNN) applied
to an image-classification task on the CIFAR-10 dataset [9],
where it is presumed that the BNN is implemented using an
MRAM-based in-memory-computing architecture. We show
how stochastic hardware can be modeled and employed in the
training process, based on the underlying hardware variabil-
ity sources. We also show how parametric and approximate
parametric models of the stochastic hardware can be formed
for neural-network systems, simplifying both the understand-
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ing and computations involved in training.

2. BACKGROUND
2.1. Data-Driven Hardware Resilience (DDHR)
Several approaches have been proposed for handling stochas-
tic hardware [10][11]. The presented approach is most closely
related to DDHR [8], which utilizes the outputs from an in-
stance of non-ideal, variation-affected hardware as training
data for a machine-learning classifier. This results in an error-
aware model for inference, where parameter fitting to the
training data is optimally adapted to the hardware. In [12],
DDHR is extended to permit non-ideal, variation-affected
hardware for the classifier itself, via an approach referred to
as Error-Adaptive Classifier Boosting (EACB), by exploiting
iterative training in Adaptive Boosting [13]. The primary
drawback of these approaches is that a particular instance
of non-ideal, variation-affected hardware is employed for
training, invoking training complexity for each new instance.
Here, S-DDHR is proposed, employing a stochastic distribu-
tion to represent the non-ideal, variation-affected hardware,
such that training can be performed once for all instances of
the hardware (i.e., samples of the stochastic distribution).

2.2. Stochastic Training
S-DDHR is developed for neural networks, employing the
back-propagation algorithm and its extension to stochastic
training. Stochastic training involves injecting noise in the
training process. Previous work regards it as a regularization
technique. For instance, [14] develops a whiteout method
to inject additive Gaussian noise to neural network train-
ing, while [15] proposes a multiplicative Bernoulli noise
injection approach applied to input and hidden nodes during
training. Recent work also begins to explore stochastic train-
ing to address compute noise in a long short-term memory
(LSTM) network [16]. While motivated by neuromorphic
architectures, [16] introduces a generic noise model rather
than attempting to model the practical stochastic noise and
variability sources from a hardware implementation. Here,
we exploit stochastic training together with a noise model
derived from the stochastic hardware. We further form para-
metric and approximate models of the hardware, aiming to
enhance designer understanding and training efficiency for
stochastic hardware.

3. OVERVIEW OF S-DDHR
Figure 1 illustrates the proposed approach of S-DDHR. Hard-
ware parameters exhibiting variability are represented by a
random variable Z. A particular instance of hardware is thus
represented by a sample zi. We point out that in general, even
a given instance of hardware can exhibit stochastic noise (i.e.,
random fluctuations in the compute outputs). In this case, the
model of an instance of hardware could be extended to in-
clude an additional random variable. However, in the emerg-
ing technologies and architectures of immediate interest, vari-
ation sources between instances of hardware, and not random
fluctuations within a given instance, are dominant [17][18].

In this case, S-DDHR, applied to the back-propagation algo-
rithm for neural network training, utilizes a model of stochas-
tic hardware employingZ for forward computation of the loss
function L. The predicted output then has the form

ŷ = f(xtrain, θ, Z). (1)
Model parameters θ (e.g., weights) are then updated through
back-propagation gradient computation, employing the ex-
pected value E[Z]. This is illustrated in algorithm 1 for one
epoch. An output from the instance of hardware for a given
input xtest during the testing process is then represented as

ŷ = f(xtest, θ, zi). (2)
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Fig. 1. System modeling employed for S-DDHR.

Algorithm 1 Stochastic Training for Neural Network
Require: model parameters θ, learning rate η, input to jth

layer aj (xtrain = a0), training labels y, no. of layers J ,
random variable Z representing stochastic hardware, loss
function L, forward function f(·), and fj(·) for jth layer

Ensure:
. Forward propagation
for j = 1 to J do

aj ← fj(aj−1, θj , Z)
end for
. L is a function of f(xtrain, θ, Z) and y
. Backward propagation
for j = J to 1 do

∂L
∂θj
← ∂L

∂fj(aj−1,θj ,Z)
∂fj(aj−1,θj ,Z)

∂θj

end for
for j = 1 to J do

θj ← θj − η ∂L∂θj
end for

With this framing, S-DDHR can be described and com-
pared with previous training approaches, via the loss func-
tions employed. To proceed with analysis of S-DDHR,
the following loss functions are defined, where Lt repre-
sents a loss function for the tth training sample (the loss
function employed as an example is the cross-entropy loss
L = 1

T

∑T
t=1 Lt, with T being the number of training sam-

ples, and C being the number of classes):
• Standard training assumes an ideal, variability-free
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model of the hardware, thus the cross-entropy loss
function, independent of Z, is

LtIdeal = −
C∑
i=1

yti log f(x
t, θ). (3)

• DDHR assumes training on each instance of hardware,
thus the loss function, employing a sample zi corre-
sponding to the variability of that hardware instance is

LtDDHR = −
C∑
i=1

yti log f(x
t, θ, zi). (4)

• While DDHR is expected to give high accuracy by ac-
counting for the specific variation of the hardware in-
stance employed, it has the cost of instance-by-instance
training. As an alternative, a fixed instance of hardware
could be used, represented by z∅, different from that
used for testing. The loss function is

LtFixed = −
C∑
i=1

yti log f(x
t, θ, z∅). (5)

• S-DDHR employs a stochastic model of the hardware
variation for training. Thus, the loss function, employ-
ing the random variable Z, is

LtS-DDHR = −
C∑
i=1

yti log f(x
t, θ, Z). (6)

As described in the following section, Z is derived from
practical variability sources in a hardware implementation.
In general, this can lead to complex models of the stochas-
tic hardware, thus complicating training. Therefore, we also
consider two variants of S-DDHR:

• Parametric S-DDHR (PS-DDHR), employs an analyti-
cal distribution for Z, derived from the structure of the
hardware and the distributions of the underlying vari-
ability sources. For the example considered, this corre-
sponds to a Gaussian distribution whose mean and vari-
ance depend on the input and model parameters, and the
loss function LPS-DDHR has the same form with equa-
tion 6, with Z ∼ N(µ(x, θ), σ2(x, θ)).

• While PS-DDHR can simplify understanding of the
stochastic hardware and also computations during the
training process by employing an analytical distribu-
tion, the distribution parameters (mean, variance) must
be computed for each layer. Approximate S-DDHR
(AS-DDHR), employs fixed distribution parameters
to further simplify computations. The loss function
LAS-DDHR, with the form of Equation 6, now has
Z ∼ N(µA, σ

2
A).

4. EXPERIMENTS AND ANALYSIS
4.1. Experiment Setup
To evaluate S-DDHR, we focus on an image classification
task based on the CIFAR-10 dataset [9]. For the hardware

implementation, both an emerging device technology and an
emerging architecture are considered, namely MRAM-based
in-memory computing. The system implements a VGG-style
[19] binarized CNN (BNN) based on [20], consisting of 9 lay-
ers (i.e. 6 conv. layers and 3 fully-conn. layers), with training
and testing performed using PyTorch [21].

4.2. MRAM-based In-Memory Computing
Figure 2 shows an in-memory-computing architecture, par-
ticularly for MRAM, consisting of M rows and N columns.
While traditional memory accesses involve one row at a
time, in-memory computing involves accessing a compu-
tational result on the bit lines BLn for all rows at once,
thus amortizing the access time and energy. MRAM stores
data as the resistive/conductive state of a two-terminal de-
vice in the bit cell, corresponding to parallel (P) RP /GP
and anit-parallel (AP) RAP /GAP resistance/conductance,
set by the spin-polarization current [3]. The in-memory-
computing architecture considered performs multiplication
between weight matrices with binary elements (Wm,n ∈
{−1, 1}) and input-activation vectors with binary elements
(am ∈ {−1, 1}), as required for BNNs. Multiplication is
performed by applying vector elements on two complemen-
tary word lines (WLm/WLm) and storing matrix elements
in the two complementary bit cells, to implement an XNOR
operation. The output from the two bit cells is thus a net resis-
tance/conductance of RP /GP or RAP /GAP , and a computed
pre-activation element un is thus the total conductance across
a bit-line/source-line pair (BLn/SLn). This is then followed
by a comparator, to apply an activation function, obtaining a
binary output activation vn ∈ {−1, 1}, as required in a BNN.
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Fig. 2. MRAM-based in-memory computing architecture.

4.3. Stochastic Model
MRAM resistances exhibit variability, expressed through
transistor-level (SPICE/SPECTRE) simulations based on a
foundry-provided device model (GlobalFoundries 22nm FD-
SOI process), where MRAM resistances are modeled as a
Gaussian random variables, i.e. RP ∼ N(µP , σ

2
P ), RAP ∼

N(µAP , σ
2
AP ). Assuming µP , µAP >> 0, the conductances

are thus: GP ∼ N( 1
µP
,
σ2
P

µ4
P
), GAP ∼ N( 1

µAP
,
σ2
AP

µ4
AP

). For a
BNN layer, the required matrix-vector multiplication (MVM)
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u = Wa, can then be modeled by the stochastic conduc-
tances, where each output element un is represented by the
total column conductance Gn = p1n × GP + p−1n × GAP ,
with p1n/p−1n being the number of element-wise product
terms equal to 1/-1 in the nth column.

For PS-DDHR, a parametric stochastic model of the com-
putation can now be formed. With M rows, p1n/p−1n can
take M+1 different values, determined by the input-activation
vector a and the weight matrix W . Hence, we see that Gn
is itself a Gaussian random variable, but whose mean and
variance are set to one of M+1 different values, as shown in
Figure 3 for the simple case of M = 4. Thus, the computa-
tion of each output-vector element un in the stochastic MVM
computation can simply be modeled using a Gaussian random
variable Gn ∼ N(µ(a,W ), σ2(a,W )), as a function of the
available a and W for forward computation during training.

4𝜇𝐴𝑃 3𝜇𝐴𝑃 + 𝜇𝑃 2𝜇𝐴𝑃 + 2𝜇P 𝜇𝐴𝑃 + 3𝜇𝑃 4𝜇𝑃
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Fig. 3. Distributions of column conductance Gn for M = 4.

For AS-DDHR, we simply model each output element un
by a Gaussian random variable Gn ∼ N(µA, σ

2
A), where

the fixed σ2
A is taken to be the largest variance among the

M+1 actual distributions. While this has only modest impact
on easing training complexity, it can have substantial impact
on easing design methodology for an MRAM in-memory-
computing architecture, in terms of specifying device-level
variability requirements.

4.4. Results and Analysis
To analyze the proposed S-DDHR approach, involving a
stochastic model of the hardware, the variability of the
MRAM RP /RAP states is scaled and the classification test-
ing accuracy of the different training approaches is observed.
Figure 4 shows the accuracy achieved for CIFAR-10 image
classification over 200 training epochs, for different multiples
of a normalized level of MRAM variability σMRAM (actual
foundry data used for MRAM variability has been normalized
to protect confidentiality).

Figure 5 summarizes the converged classification accu-
racy versus MRAM variability, with error bars showing the
standard deviation over five random samples of the stochas-
tic hardaware model. As the variation σ increases, we see
that training with LDDHR maintains high performance as
expected, achieving an accuracy greater than 90%, but, un-
fortunately, it incurs instance-by-instance training cost. On
the other hand, training without accounting for stochastic
hardware LIdeal or using a fixed sample of stochastic hard-
ware LFixed, avoids instance-by-instance training but exhibits
substantially degraded accuracy, since training is done for
a model that is effectively different than used for testing.
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Fig. 4. Convergence under different variation levels.

Finally, training with both LPS-DDHR and LAS-DDHR avoid
instance-by-instance training and yet also maintain high ac-
curacy, with a slight drop as the variation level increases.
These results are quantified in table 1, showing the accuracy
at the 10× σMRAM level. As seen S-DDHR exhibits signifi-
cant ability to tolerate hardware variability, with less than 3%
degradation in accuracy from variability-free hardware.
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Fig. 5. Accuracy of different models vs. variation levels.

Table 1. Accuracy at 10× σMRAM

Model LDDHR LIdeal LFixed LPS-DDHR LAS-DDHR

Accuracy 90.40% 33.18% 11.25% 88.11% 87.42%

5. CONCLUSION
This paper presents the approach of S-DDHR, and demon-
strates it for neural-network training. S-DDHR involves
forming a stochastic model to represent hardware variability,
and employing this for stochastic training of inference-model
parameters. Presuming neural-network implementation based
on MRAM in-memory computing, the approach to forming
a stochastic hardware model based on underlying variability
sources is illustrated. Using this, the efficacy of S-DDHR
is shown through simulations, demonstrating performance
near the level of a system trained for a particular instance of
variation-affected hardware, yet without requiring instance-
by-instance training cost.
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