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ABSTRACT

Most deep neural networks (DNNs) require complex models to
achieve high performance. Parameter quantization is widely used
for reducing the implementation complexities. Previous studies
on quantization were mostly based on extensive simulation using
training data on a specific model. We choose a different approach
and attempt to measure the per-parameter capacity of DNN models
and interpret the results to obtain insights on optimum quantization
of parameters. This research uses artificially generated data and
generic forms of fully connected DNNs, convolutional neural net-
works, and recurrent neural networks. We conduct memorization
and classification tests to study the effects of the number and pre-
cision of the parameters on the performance. The model and the
per-parameter capacities are assessed by measuring the mutual in-
formation between the input and the classified output. To get insight
for parameter quantization when performing real tasks, the training
and test performances are compared.

Index Terms— Deep neural network, parameter quantization,
network capacity

1. INTRODUCTION

Deep neural networks (DNNs) have achieved impressive perfor-
mance on various machine learning tasks. Several DNN architec-
tures are known, and the most famous ones are fully connected
DNNs (FCDNNs), convolutional neural networks (CNNs), and re-
current neural networks (RNNs). It is known that neural networks
do not need full floating-point precision for inference [1, 2, 3]. A
32-bit floating-point parameter can be reduced to 8-bit, 4-bit, 2-bit,
or 1-bit, but this can incur performance degradation. Therefore,
precision should be optimized, which is primarily conducted by
extensive computer simulations using training data. This not only
takes much time for optimization but also can incorrectly predict the
performance in real environments when the characteristics of input
data are different from the training data.

In this study, we attempt to measure the capacity of DNNs,
including FCDNN, CNN, and RNN, using a memorization and
classification task that applies random binary input data. The per-
parameter capacities of various models are estimated by measuring

This work was supported by Samsung Advanced Institute of Technol-
ogy through Neural Processing Research Center (NPRC) in Seoul National
University. This work was also supported in part by the Brain Korea 21 Plus
Project and the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIP) (No. 2018R1A2A1A05079504).

the mutual information between the input data and the classification
output. Then, the fixed-point performances of the models are mea-
sured to determine the relation between the quantization sensitivity
and the per-parameter capacity. The memorization capacity analysis
results are extended to real models for performing image classifica-
tion, by which the parameter quantization sensitivity is compared
between memorization and generalization tasks.

The contributions of this paper are as follows.

• We experimentally measure the memorization capacity of
DNNs and estimate the per-parameter capacity. The capacity
per parameter is between 2.3 bits to 3.7 bits, according to the
network structure, which is FCDNN, CNN, or RNN.

• We show that the performance of the quantized networks is
closely related to the capacity per parameter, and FCDNNs
show the most resilient quantization performance while
RNNs suffer most from parameter quantization. The net-
work size hardly effects the quantization performance when
DNN models are trained to use full capacity.

• We suggest the sufficient number of bits for representing
weights of neural networks, which are approximately 6 bits,
8 bits, and 10 bits for FCDNNs, CNNs, and RNNs, respec-
tively. This estimate of the number of bits for implementing
neural networks is very important considering that many ac-
celerators are designed without any specific training data or
applications.

• The study with real-models shows that neural networks are
more resilient to quantization when performing generaliza-
tion tasks than conducting memorization.

2. RELATED WORKS AND BACKGROUNDS

2.1. Neural network capacity

The capacity of neural networks has been studied since the early days
of DNN research. Although the capacity can be defined in many
ways, it is related to the learnability of networks. The capacity of
networks is shown as the number of uncorrelated random samples
that can be memorized [4]. A single-layer perceptron with n param-
eters can memorize at least 2n random samples [5]. In other words,
the network can always construct a hyperplane with n parameters
that divides 2n samples. Additionally, the capacity of a three-layer
perceptron is proportional to the number of parameters [6]. Recently,
RNNs were trained with random data to measure the capacity per
parameter [7]. Our study is strongly motivated by this research, and
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extends it to the quantization performance interpretation of generic
DNN models, including FCDNN, CNN, and RNN. Recent studies
have showed that neural networks have a generalization ability even
if the expressive capacity of the model is sufficiently large [8, 9]. In
this paper, we also discuss the effect of network quantization when
performing generalization tasks.

2.2. Fixed-point deep neural networks

Early works on neural network quantization usually employed 16-bit
parameters obtained by directly quantizing the floating-point num-
bers [1]. Recently, a retraining technique was developed to im-
prove the performance of quantized networks [2, 3]. Retraining-
based quantization was applied to CNN and RNN models, showing
superior performance compared to directly quantized ones [10, 11].
Many studies attempting extreme quantization have been published,
such as 2-bit ternary [2, 12, 13], 1-bit binary weight quantization,
and XNOR networks [14, 15]. Some aggressive model compres-
sion techniques also employed vector quantization or table look-up
[16, 17]. However, not all CNNs show the same quantization per-
formance. For example, AlexNet [18] shows almost the same per-
formance with only 1-bit quantized parameters. However, the same
quantization technique incurs a very severe performance loss when
applied to ResNet [15]. A previous study shows that large sized
networks are more resilient to severe quantization than smaller ones
[19]. Theoretical works and many practical implementation opti-
mization techniques have been studied [20, 21, 22, 23, 24]. Recent
work increases the number of network parameters to preserve the
performance under low-precision quantization [25]. Our works are
not targeted to a specific data or model, but introduce the general
understanding of parameter quantization.

3. MEMORIZATION CAPACITY MEASUREMENTS OF
DNNS

3.1. Capacity measurements on a memorization task

We assess the network capacity of DNN models using a random data
memorization and classification task [7]. In this task, N random bi-
nary vectors, X , are generated and each is randomly and uniformly
assigned to the output label Y . The size of the binary vector depends
on the DNN model. For FCDNN, the input X is a one dimensional
vector whose size is determined by the hidden layer dimension. In
CNN, the input needs to be a 2-D or 3-D tensor. Input samples of
CNNs are generated by concatenating and reshaping random binary
vectors. During the training process, the DNN is trained to correctly
predict the label, which is 0 or 1, of the random inputX . As the num-
ber of input data size,N , increases, the classification accuracy drops
because of the limited memorization capacity. Note that the accu-
racy for the memorization task refers to the training performance
after convergence because there is no proper test dataset for random
training samples.

The capacity is measured using the mutual information, defined
as a measure of the amount of information that one random vari-
able contains about another random variable [26]. The mutual infor-
mation of a trained network with N input samples is calculated as
follows:

I(Y ; Ŷθ|X) = H(Y |X)−H(Y |Ŷθ, X)

= N

(
1− (p log2

1

p
+ (1− p) log2

1

(1− p) )
)

,

(1)

where p is the mean classification accuracy for all samples under
trained parameter θ. If the training accuracy is 1, the model memo-
rizes all random samples and the I(Y ; Ŷθ|X) becomes the number
of samples N . If the training accuracy is 0.5, I(Y ; Ŷθ|X) goes to 0.

The network capacity is defined as

C = max
θ
I(Y ; Ŷθ|X). (2)

The accuracy, p, may vary depending on the training method of the
model. We find N and p that maximize the mutual information of
the networks by iteratively training the models. This optimization
employs both grid search- and Bayesian optimization-based hyper-
parameter tuning [27]. The optimization procedure consists of three
stages. First, we try to find the largest input data size whose accuracy
is slightly lower than 1. Second, we perform a grid search to deter-
mine the boundary values of the hyper-parameters. The searched
hyper-parameters can include initialization, optimizer, initial learn-
ing rate, learning rate decay factor, batch size, and optimizer vari-
ables. Finally, we conduct hyper-parameter tuning within the search
space using Scikit-learn library [28]. We add the number of training
samples N as a hyper-parameter and use the mutual information of
Eq. (1) as the metric for the optimization.

3.2. Network quantization and parameter capacity

Quantization of model parameters perturbs the trained network,
therefore, fixed-point training or retraining with full-precision back-
propagation is usually needed [2, 12, 14, 29]. However, the per-
formance of the quantized networks does not always meet that of
the floating-point models, even after retraining. This suggests that
model capacity is reduced by quantization, especially when the
number of bits used is very small.

In this research, we observe the memorization capacity degra-
dation caused by quantization in generic FCDNN, CNN, and RNN
models. The uniform quantization is used for the sake of convenient
arithmetic, and the same step size is assigned to a layer or feature
map in the FCDNN and CNN. We assigned two step sizes in a LSTM
layer. The biases are not quantized, because they have a large dy-
namic range. It is important to note that the weights connected to the
output are not quantized, because their optimum bit-widths depend
on the number of labels in the output. Quantization is performed
from floating-point to 8, 6, 5, 4, 3, and 2-bit precision, in sequence.
Retraining is performed after every quantization, but requires only a
small number of epochs, because only fine-tuning is needed [2].

4. EXPERIMENTAL RESULTS ON MEMORIZATION
CAPACITY OF FLOATING-POINT DNNS

The capacities of FCDNNs, CNNs, and RNNs are measured via the
memorization task explained in Section 3.1. The models used for the
test employ floating-point parameters.

4.1. Capacity of FCDNNs

The training data for FCDNNs is a 1-D vector of size nin. N input
data are used as for the training data. The output, Y , is the ran-
domly assigned label, either 0 or 1, for each input. Thus, inputs,
X and Y , are represented as X ∈ {0, 1}N×nin and Y ∈ {0, 1}N ,
respectively. The input data dimension, nin, should be larger than
log2N so that no overlapped data is contained among N input data.
In the experiments for FCDNNs, the input vector dimension, nin, is
chosen to be equal to the number of units in the hidden layer.
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Fig. 1. (a) Mutual information according to the number of inputs
N . (b) The relationship between the number of parameters and the
capacity of networks in FCDNNs and CNNs.

We conduct experiments for FCDNNs with hidden layer dimen-
sions of 32, 64, 128, and 256, and with hidden layer depths of 1, 2,
3, and 4. For each model, experiments are conducted to measure the
accuracy of memorization while increasing the size of the input data,
N . Note that only the training error is measured in this memoriza-
tion task, because there is no unseen data. Experimental results are
based upon the best accuracy obtained when attempted with different
hyper parameters.

Fig. 1(a) shows the memorization accuracy and the mutual in-
formation obtained using Eq. (1) on the FCDNN. The model is com-
posed of three layers and the hidden layer of size 64. Here, we find
that the amount of mutual information steadily increases as the input
data size grows. However, it begins to drop as the input size grows
farther, and the memorization accuracy drops. By analyzing the ac-
curacy trend of the model, it is possible to distinguish the input data
size into three regions: the over-parameterized, the maximum perfor-
mance, and the under-parameterized sections, as shown in Fig. 1(a).
For example, if the model is trained to memorize only 10,000 data, it
can be regarded as over-parameterized. The number of data that can
be memorized by maximally utilizing all the parameters is between
30,000 and 40,000. In over-parameterized regions, performance can
be maintained, even if the capacity of the networks is reduced.

The per-parameter capacity of FCDNNs is shown in Fig. 1(b).
Regardless of the width or depth, one parameter has a capacity of
1.7 to 2.5 bits, and FCDNNs have an average of 2.3-bit capacity per
parameter. Note that per parameter capacity is constant regardless
of the width or depth of layers. The total capacity of the model may
be interpreted as an optimal storage that can store a maximum of
random binary samples [5, 30].
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Fig. 2. Quantization effect when networks use the (a) full capacity
and (b) half capacity.

4.2. Capacity of CNNs

The capacity of CNNs is also measured via a similar memorization
task. CNNs can have a variety of structures according to the number
of channels, the size of the kernels, and the number of layers. The
kernel size of CNNs in this test are either (3× 3) or (5× 5), which
are the same for all layers and the number of convolution layers is
from 3 to 9. The dimension of the inputs is (32 × 32 × 1) for all
experiments. Three max-pooling operations are applied to reduce
the number of parameters in the fully connected layer. As shown in
Fig. 1(b), the convolution layers have the per-parameter capacity of
between 2.86 and 3.09, which is higher than that of FCDNNs. The
average capacity per parameter of the tested models is 3.0 bits.

Results show that the per-parameter memorization capacity of
CNNs is higher than that of FCDNNs, even when CNNs memorize
uncorrelated data. Note that one parameter of FCDNNs is used only
once for each inference. However, the parameter of CNNs is used
multiple times. This parameter-sharing nature of CNNs seems to
increase the amount of information that one parameter can store.

4.3. Capacity of RNNs

It has been shown that the various structures of RNNs all have sim-
ilar capacity per parameter of 3 to 6 bits [7]. We train RNNs us-
ing a dataset with no sequence correlation to show the capacity of
the parameters. The random input dataset is composed of inputs,
X ∈ {0, 1}N×nseq×nin and labels Y ∈ {0, 1}N , which are uni-
formly set to 0 or 1. The training loss is calculated using the cross-
entropy of the label at the output of the last step.

We train RNNs with a single LSTM layer of 32-D. The input
dimension, nin, is also 32-D and the amount of unrolling sequence,
nseq , is five-step. We apply 5 input random vectors, X0, X1, X2,
X3, and X4, each with 32-D, and assign one label to this 160-D
vector at the last time step. The error propagates from the last step
only, and the outputs at intermediate time-steps are ignored. The
number of parameters in the network is 8,386. In this case, the max-
imum mutual information is obtained when the number of samples
is 32K, and the memorization accuracy is 99.52 %. Therefore, the
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Fig. 3. Performance degradation according to the quantization preci-
sion on CNN trained with CIFAR-10 dataset. Solid and dashed lines
denote the accuracy on the training and test dataset, respectively.

per-parameter capacity of the model is 3.7 bits. The RNN shows
higher per-parameter capacity than FCDNNs and CNNs.

5. EXPERIMENTAL RESULTS OF PARAMETER
QUANTIZATION

5.1. Capacity under parameter quantization

We have shown that FCDNNs, CNNs, and RNNs have different
per-parameter capacities. According to the parameter-data ratio, a
trained DNN can be an over-parameterized, max-capacity, or under-
parameterized model. Thus, we can assume that the DNN perfor-
mance under quantization would depend on not only the network
structure, such as FCDNN, CNN, or RNN, but also the parameter-
data ratio. The experiments are divided into two cases. The first is to
measure performance degradation via quantization precision when
each model is in the maximum capacity region. The second ana-
lyzes performance when the models are in the over-parameterized
region.

When the FCDNN, CNN, and RNN are trained to have the maxi-
mum memorization capacity, the performances with parameter quan-
tization are shown in Fig. 2(a). The fixed-point performances of two
FCDNNs, two CNNs, and two RNNs are illustrated. CNN model A
and B have (5 × 5) and (3 × 3) kernels, respectively. Both mod-
els consist of 6 convolutional layers and an output fully connected
layer. With 6-bit parameter quantization, the FCDNN shows no ac-
curacy drop. However, those for CNNs and RNNs are 5 % and 18
%, respectively. Because the RNN contains the largest amount of
information at each parameter, the loss caused by parameter quan-
tization seems to be the most severe. We also find that there is no
decline in performance until the parameter precision is lowered to
6-bit for FCDNNs, 8-bit for CNNs, and 10-bit for RNNs, even when
all models use full capacity.

Next, we show the fixed-point performance of DNNs when they
are trained to be in the over-parameterized region. Note that the
per-parameter capacity is lowered in the over-parameterized region.
We conducted simulation with half size of the maximum number
of data that can be memorized. For example, an FCDNN used for
the measurement has 3 hidden layers with a hidden-layer dimension
of 128; the capacity of the corresponding model is about 217 bits.
The network is over-parameterized when the number of memorized
samples is 216. Fig. 2(b) shows that the FCDNN model memorizes
all samples even with 4-bit parameter quantization when the model
uses half of the capacity. We can find that over-parmeterized models
are less sensitive to bit-precision on CNNs and RNNs.

5.2. Quantization experiments on real tasks

We have assessed the required precision of networks for performing
memorization tasks. The memorization test only uses the training
data that are artificially generated. However, most neural networks
should conduct more than memorization because the test data are
not seen during the training. In this section, we analyze the effects
of network quantization for performing real tasks. We train two dif-
ferent sized CNN models with CIFAR-10 data. The structures of the
two models are as follows:

2× kC −MP2− 2× 2kC −MP2− 2× 4kC −MP2 (3)
−2× 8kFC − 10output.

The size of kernels is (3 × 3), kC represents a convolution layer
with k channels and 8kFC means a fully connected layer with 8k
neurons. We experimented 3 types of CNNs and they are denoted as
Large, Small, and T iny, where the number of channels, k, is 32,
16, and 8, respectively.

We analyze the impact of network quantization on the test per-
formance. Fig. 3 shows the training and test data based performance
of fixed-point CNNs on real data. When applying the training data
that may have been memorized during the training phase, the Large
model shows indifferent performance surface regardless of the pa-
rameter precision. But, for the Small model, the 2-bit quantiza-
tion results in quite degraded performance when compared to the
floating-point network. However, the test accuracy of the Small 2-
bit model is not much lowered. The T iny model has insufficient
memorization capacity so that training accuracy is 0.87 even at the
full precision. In this case, the training and test accuracy does not
decrease until 6-bit precision. The training accuracy drops sharply
as the precision decreases to 5 bits, but the test accuracy degradation
is very small. This observation suggests that the quantized networks
are more resilient when performing generalization tasks. Thus, the
required precision of the network obtained with the memorization
task can be considered a conservative estimate.

6. CONCLUDING REMARKS

Quantization of parameters is a straightforward way of reducing
the complexity of DNN implementations, especially when VLSI
or special-purpose neural processing engines are used. Our study
employed simulations on various DNN models. Memorization tests
using random binary input data were conducted to determine the ca-
pacity by measuring the mutual information. Our simulation results
show that the per-parameter capacity is not sensitive to the model
size, but is dependent on the structure of the networks, such as
FCDNN, CNN, and RNN. The maximum per-parameter memoriza-
tion capacities of FCDNNs, CNNs, and RNNs are approximately
2.3 bits, 3.0 bits, and 3.7 bits per parameter. Thus, RNNs have
the tendency of demanding more bits when compared to FCDNNs.
We quantized DNNs under various capacity-utilization regions and
showed that the memorization capacity of parameters are preserved
up to 6 bits, 8 bits, and 10 bits on FCDNNs, CNN, and RNNs,
respectively. The performance of the quantized networks was also
tested with the image classification task. The results show that
networks need more parameter precision when conducting memo-
rization tasks, rather than inferencing with unseen data. Thus, the
precision obtained through the memorization test can be considered
a conservative estimate in implementing neural networks for solv-
ing real problems. This research not only gives valuable insights
on the memorization capacity of neural networks but also provides
practical strategies for training and optimizing fixed-point DNNs.
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