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ABSTRACT

We propose a fully automated algorithm for the segmenta-
tion of common carotid artery in longitudinal mode ultra-
sound images using active oblongs. The problem of segmen-
tation and subsequent delineation of lumen-intima layer is
solved as an optimization of a locally defined contrast func-
tion with respect to five degrees-of-freedom that character-
ize the active oblong. The detection of the common carotid
artery and subsequent initialization of the active oblong in-
side the common carotid artery region has been done using
a combination of binary thresholding, Hough transform, and
pixel-offset operations. The algorithm has been validated on
the Brno university signal processing lab B-mode ultrasound
image database, which contains 84 longitudinal mode ultra-
sound images of the common carotid artery. The segmenta-
tion results are validated against the ground truth provided by
two practising radiologists using Jaccard and Dice similarity
measures. We have achieved a detection and segmentation
accuracy of 95.2% and 97.5%, respectively.

Index Terms— Common carotid artery (CCA), segmen-
tation, oblong, Hough transforms, ultrasound (US) images.

1. INTRODUCTION

The common carotid arteries are the main arteries responsible
for supplying oxygenated blood to the head and neck. The
carotid US imaging is a non-invasive and most commonly
performed procedure to detect stenosis of the carotid artery,
a condition that increases the risk of ‘stroke’ [1]. A typical
carotid artery longitudinal mode US image [2] with manu-
ally marked lumen-intima boundary is shown in Fig. 1. Is-
chemic stroke is the second leading cause of deaths world-
wide [3]. It is due to the build up of plaque inside carotid ar-
teries that hampers the blood flow to the brain causing carotid
Atherosclerosis disease commonly called stroke [1]. Lifestyle
changes and medical treatment can prevent the occurrence of

Fig. 1: [Color online] A longitudinal mode ultrasound image
with lumen-intima layer manually marked [2].

stroke if the disease is detected in early stages. The CCA de-
tection and segmentation in ultrasound images is an impera-
tive step in quantifying the plaque and evaluating the severity
of Atherosclerosis causing stroke [4].

1.1. Prior Work

A number of studies in the past have addressed the problem of
CCA segmentation using transverse mode US images. Mao
et al. proposed a semi-automated algorithm based on a de-
formable active contour model for the segmentation of lumen-
intima layer [5]. Hamou et al. proposed a histogram equal-
ization and canny edge detection based segmentation method
[6]. Abdel-Dayem et al. proposed a watershed-based algo-
rithm for the segmentation of CCA [7]. Ukwatta et al. pro-
posed a level-set-based semi-automatic algorithm to segment
the media-adventitia boundary and lumen-intima boundary
[8]. Hamou et al. used a modified dynamic programming
based snake algorithm for solving the CCA segmentation prob-
lem [9]. Kumar et al. proposed circular and elliptical ac-
tive disc-based segmentation techniques for the delineation of
media-adventitia and lumen-intima layers, respectively [10],
[11]. Since the proposed algorithm addresses the CCA seg-
mentation problem in longitudinal mode US images, it is im-
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portant to discuss the prior work done on addressing CCA
segmentation in longitudinal mode US images. But, the task
of segmentation of CCA using longitudinal mode US images
has been addressed by only few researchers. Golemati et al.
used Hough transform for segmentation of CCA in longitudi-
nal mode US images [12] . Benes et al. proposed a RANSAC-
based method for CCA region localization [13]. Rouco et
al. proposed a phase symmetry based CCA detection algo-
rithm for longitudinal mode US images [14]. However, the
studies addressing the problem of CCA segmentation in lon-
gitudinal mode US images have been conducted on a small
number of subjects (4 to 6) [12]. Probably, the dearth of an-
notated data is the reason for non-reporting of segmentation
results/publications on CCA using longitudinal mode US im-
ages. To address this problem, a database for measurement
of static and dynamic parameters of the CCA in both trans-
verse and longitudinal mode was created and released by a
team of researchers at the Brno University Signal Processing
Laboratory (SP Lab) [2].

1.2. Our Contribution

The proposed method uses a novel, automated rectangular ac-
tive contour called ‘active oblong’ for the segmentation of
CCA due to its inherent capability to segment rectangular-
shaped regions. The method is motivated by the technique
proposed by Pediredla et al. for the automated image quanti-
tation for western blot analysis [15] and the concept of rectan-
guscule proposed by Uhlmann et al. [16]. The segmentation
procedure consists of two major steps: automatic initializa-
tion of the active oblong inside the CCA region using Hough
transform and pixel-offset operations and segmentation of the
CCA region using active oblong. The oblong use a specified
square template called the mother oblong, and it evolves to
segment the CCA region by a restricted affine transformation.
This evolution is achieved through the optimization of the five
degrees-of-freedom that parameterize the mother oblong. The
energy of the active oblong is defined as the normalized con-
trast function between the inner rectangle and the region be-
tween the outer and inner rectangles. The five free param-
eters are optimized using the gradient-descent optimizer by
minimizing the energy function with respect to each param-
eter. The proposed method’s performance evaluation is done
by comparing the results of the proposed technique with the
ground truth provided by two expert radiologists for the SP
Lab longitudinal mode ultrasound image database [2].

2. ACTIVE OBLONG DESIGN AND OPTIMIZATION

The mother oblong is composed of two concentric rectan-
gles which are aligned with the axes and centered at the ori-
gin. The evolution of the oblong is based on a locally de-
fined contrast function defined with respect to five indepen-
dent degrees-of-freedom out of which two for horizontal and

Fig. 2: [Color online] Mother oblong.

vertical scaling (A and B) , two for translation (xc and yc)
and one for rotation (θ) of the oblong.

2.1. Template Parameterization

The inner square of the mother oblong is parametrized as fol-
lows:
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The outer square is parameterized as:[
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where t ∈ (0,4]. The factor
√
2 is to guarantee that the area in

the annulus between the two concentric squares is equal to the
area of the inner square. A mother oblong template is shown
in Fig. 2.

2.2. From Template to Oblong

The mother oblong is parametrized as static, but the offsprings
of the mother oblong are active (agile) and are derived from
the mother oblong as following:[

Xi

Yi

]
=

[
A cos θ B sin θ
−A sin θ B cos θ

] [
xi
yi

]
+

[
xc
yc

]
(2)

for i = 0, 1. The oblong’s movement is governed by the five
free parameters {A, B, xc, yc, and θ}.

2.3. Energy Function of the Oblong

We consider the region covered by the inner rectangle as fore-
ground (denoted as τ0) and that in the annulus between the
inner and outer rectangles as the immediate background de-
noted as (τ1−τ0), where τ1 is the region enclosed by the outer
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Table 1: Performance analysis of the proposed method
Algorithm #Images Dice index Jaccard index Sensitivity Specificity Accuracy Localization
Golemati et al. [12] 4 - - 0.9375 0.970 0.95375 -
Benes et al. [13] 30 - - - - - 96.66%
Proposed technique 84 0.9335 0.8722 0.9269 0.9863 0.9750 95.20%

rectangle (X1(t), Y1(t)) and τ0 is the region enclosed by the
inner rectangle (X0(t), Y0(t)). The energy of the oblong is
defined as the normalized contrast function:

E =
1

AB

(∫∫
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The
√
2 factor is to ensure that in regions of constant intensity,

the energy E is zero so that the oblong attain a stationary
status in such regions. The AB normalization ensures that a
tight-fit outline is obtained.

2.4. Optimization

We use the gradient descent technique [17] to optimize the
energy E with respect to A, B, xc, yc, and θ. The step value
γn is proportional to the gradient of the function. Starting
with an initial guess P0 for a local minimum of E[P0] and
considering the sequence P0, P1, P2, ... such that,

Pn+1 = Pn − γn∇E[Pn]; E[P0] ≥ E[P1] ≥ E[P2]...

where Pn denotes the parameter (A, B, xc, yc and θ) at itera-
tion ‘n’. The gradient descent optimization requires the com-
putation of the partial derivatives of the energyE with respect
to the five degrees-of-freedom. We use Green’s theorem to
achieve optimization in this respect and the final expressions
are given below:
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3. INITIALIZATION OF THE OBLONG

We perform a hard binary thresholding as a necessary pre-
processing step before using the Hough transform algorithm
[18] to obtain the boundary separating the lumen-intima and
media-adventitia boundary. The binary thresholding value Tv
for f(x, y), where, 0 ≤ f(x, y) ≤ 1 is arrived at empirically
and is set to 0.6 so that the high intensity lumen boundaries
are highlighted. This binary intensity thresholding operation
results in the preprocessed image f ′(x, y). A line can be rep-
resented in the form of slope (m) and intercept (c).

y = mx+ c

In the Hough space the line can be represented as a point in
the form of (r ∈ R) and (φ ∈ [0, 180]).

r = x cos(φ) + y sin(φ)

y = −cos(φ)

sin(φ)
x+

r

sin(φ)

Using the Hough transform algorithm, the longest line de-
tected in the image f ′(x, y) is ultimately the line separating
the lumen-intima and media-adventitia layers. The vertical
offset midpoint denoted by Mp is obtained to ensure that the
oblong is initialized inside the CCA region.

Mp = (xm, ym ± S0)

The mid-point of the detected line (xm,ym) is offset by S0

pixels, and here we chose 30 ≤ S0 ≤ 50 pixels. There is
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(1a) (2a) (3a) (4a) (5a)

(1b) (2b) (3b) (4b) (5b)

(1c) (2c) (3c) (4c) (5c)

(1d) (2d) (3d) (4d) (5d)

Fig. 3: [Color online] (1a-5a): Input US images with initialization of the active oblong inside the CCA region; (1b-5b): CCA
outline by the active oblong; (1c-5c): Segmentation binary map by the proposed method; (1d-5d): Ground truth.

a ‘positive’ offset if the boundary separating the near wall
media-adventitia and near wall lumen-intima is detected, con-
versely, there is a ‘negative’ offset if the boundary separat-
ing far wall lumen-intima and far wall media-adventitia is de-
tected. The offset sign is automated by calculating the mean
pixel intensity both above and below the initialization point
by using an (N ×N) window. We chose N = 60 and the ob-
long is initialized in the region where the mean pixel intensity
is lower as compared to the other since the CCA region is of
low intensity.

4. EXPERIMENTAL RESULTS

The algorithm has been validated on Brno University SP Lab
publicly available longitudinal mode US image database [2].
The algorithm is invoked on the binarized US image, we use
Otsu’s single level thresholding [19] to obtain the binary im-
age. The binarized image is inverted since CCA region is of
low intensity and the oblong fits on to bright regions. We
have used the Dice index and Jaccard index measure for the
purpose of quantitative comparison, the results of which have
been shown in Table 1 which also includes the sensitivity,
specificity, accuracy, and localization scores. Our method is
shown to outperform the existing method which was validated

on just four subjects. Figures 3 (1a)-(5a) show the input US
images with initialization of the active oblong. Outline and
segmentation using the proposed method are shown in Fig-
ures 3 (1b)-(5b) and 3 (1c)-(5c), respectively. Figures 3 (1d)-
(5d) illustrate the expert ground truth. We could not report
the Dice and Jaccard index similarity scores of other methods
as their implementations were not publicly available and they
had validated their method on only a few number of subjects.

5. CONCLUSIONS

Automated segmentation of CCA is important in evaluating
the severity of Atherosclerosis causing stroke. We have pro-
posed a fully automated active oblong based CCA segmenta-
tion technique for longitudinal mode ultrasound images. The
localization of the oblong is achieved through the Hough trans-
form technique. Optimization of the cost function with re-
spect to five degrees-of-freedom is achieved using the gradi-
ent descent technique and Green’s theorem. We have evalu-
ated our technique on SP Lab ultrasound image database con-
taining 84 images. The segmentation results with a Dice sim-
ilarity score of 93.35% demonstrate the reasonable accuracy
and robustness of the proposed algorithm.
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