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ABSTRACT
Ultrasound localization microscopy offers new radiation-
free diagnostic tools for vascular imaging deep within the
tissue. Despite its high spatial resolution, low microbubble
concentrations dictate the acquisition of tens of thousands of
images, over the course of several seconds to tens of seconds,
to produce a single super-resolved image. To address this
limitation, sparsity-based approaches have recently been
proposed to significantly reduce the total acquisition time,
by resolving the vasculature in settings with considerable
microbubble overlap. Here, we report on initial results of im-
proving the spatial resolution and visual vascular reconstruc-
tion quality of sparsity-based super-resolution ultrasound
imaging from low frame-rate acquisitions, by exploiting the
inherent kinematics of microbubbles’ flow. Our method relies
on simultaneous tracking and sparsity-based detection of
individual microbubbles.

Index Terms— Ultrasound, Contrast agents, Super-
resolution, Compressed sensing, Kalman filter.

I. INTRODUCTION
In recent years, super-resolution contrast-enhanced ul-

trasound (US) imaging has emerged, and enabled a fine
visualization and detailed assessment of capillary blood
vessels in vivo [1–7]. Super-resolution US relies on concepts
borrowed from super-resolution fluorescence microscopy
techniques such as photo-activated localization microscopy
(PALM) [8]. Similarly, in contrast enhanced US (CEUS)
individual resonating microbubbles (MBs) are injected into
the bloodstream, as means to image blood vessels with
improved contrast. They are similar in size to red blood cells,
thus can be regarded as point emitters. Their subsequent
localizations are also accumulated, producing a final super-
resolved image of the vascular bed with a ten-fold improved
spatial resolution compared with standard CEUS imaging. To
obtain reliable localizations, low MB concentrations are typi-
cally used [2, 3]. Despite yielding a substantial improvement
in spatial resolution and blood velocity measurements in
sub-diffraction vessels, super-resolution ultrasound imaging
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typically requires tens of thousands of frames to produce a
single super-resolved image.

To overcome the temporal limitation of localization-based
super-resolution without compromising the spatial resolution
of the reconstructed image, sparsity-based [9] approaches
were recently proposed [10–13], as well as a deep-learning
based approach [14]. These techniques favor high-density
acquisitions with overlapping MBs to reduce the total imag-
ing time. In [10, 15], sparsity-based super-resolution US
hemodynamic imaging (SUSHI), using ultrafast plane-wave
acquisition, demonstrated a super-resolved time-lapse movie
of 25Hz, showing super-resolved hemodynamic changes
in blood flow within a rabbit’s kidney. In [12], using a
clinically approved scanner with an acquisition rate of 10Hz,
a super-resolved image of a human prostate vasculature was
obtained, by performing frame-by-frame sparse localization.
However, no information about blood flow characteristics
was recovered in these methods.

Moreover, while previous super-resolution works focused
on ultrafast plane-wave image acquisition, e.g. [1, 13, 15],
most clinically used scanners are low-rate scanners (10-
25Hz). When using high frame-rate scanners, e.g. ultrafast
plane-wave imaging, fast super-resolution imaging can be
achieved via SUSHI [10, 13, 15]. However, as the frame-rate
decreases, MB detections become more sporadic, resulting
in inconsistent depiction of the vessels. Thus, the so-called
missing information needs to be filled-in by other means,
albeit with higher computational cost.

Here we improve upon sparsity-based super-resolution
CEUS imaging, by exploiting the inherent flow of MBs
as an additional structural prior to achieve super-resolution
from images obtained by low frame-rate US scanners. Our
method, termed simultaneous sparsity-based super-resolution
and tracking, or 3SAT, combines weighted sparse recovery
with simultaneous tracking of the individual MBs in the
imaging plane. The structural movement of MBs in the
bloodstream dictates that MBs are more likely to be found
in certain areas of the next frame, given their past and
current locations. The position history of each MB is used to
estimate the position of the MBs in the next frame, which
in turn is used to form a weighting matrix for weighted
sparse recovery for locating the MBs. This allows to favor
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more likely locations in the sparse recovery process. With the
addition of each new frame, the tracks are updated online.
Since our approach tracks individual MBs, it is possible to
also estimate their velocities.

The reconstruction process of 3SAT can be considered as
sparse recovery with time-varying support [16–19], where
the support represents the MB locations. 3SAT differs from
these methods in the following manner. First, previous works
assume a first-order recursion for the propagation model
of the non-zero entries of the sparse signals In this case,
only the support of the sparse signal is of interest, but in
CEUS, MB kinematics also include varying velocities. Here,
an extended model is considered, which includes the position
estimation of the MBs together with their velocities. Second,
as MBs flow over time, new MBs appear and some MBs
vanish from the imaging plane, due to the 3D geometry
of the blood vessels. It is thus desirable to associate new
MBs to previous localizations to improve the overall tracking
and to achieve a more reliable estimation of their motion
kinematics. This association process is not considered in
prior works on sparse recovery with time-varying support,
but is taken into account in 3SAT by the use of an automatic
association algorithm, combined with Kalman filtering.

The rest of the paper is organized as follows. Section II
describes 3SAT and each of its building blocks. Section
III presents simulation results. Conclusions are presented in
Section IV.

Throughout the paper, x represents a scalar, x a vector,
X a matrix and IN×N is the N × N identity matrix.
The notation XT represents the transpose of X and XH

its conjugate transpose. The notation ||·||p represents the
standard p-norm and ||·||F is the Frobenius norm. Subscript
xl denotes the lth element of x and xl is the lth column of
X, while superscript (·)p refers to the pth MB. The estimated
vector in frame k, given the estimate in the (k−1)th frame, is
indicated by sk|k−1. Likewise Pk|k−1 indicates its estimated
covariance matrix k, given the k − 1 estimate. The ijth
element of a matrix A is denoted A[i, j].

II. SIMULTANEOUS SPARSITY-BASED
SUPER-RESOLUTION AND TRACKING

II-A. Weighted sparse recovery

We start from a contrast-enhanced ultrasound sequence of
K frames where each frame consists of M×M pixels. Prior
to 3SAT processing, all frames are registered, as described
in [12]. Similar to [11], a frame is modeled as a summation
of Lk individual MB echoes,

Zk(x, y) =

Lk∑
i=1

u(x− xi, y − yi)σi, (1)

where u(·, ·) is the point spread function (PSF) of the
transducer and σi is the magnitude of the returned echo

from the ith MB located at position (xi, yi). The PSF of
the transducer is assumed to be known.

Following similar derivations to [15], we discretize the
kth frame in (1) as Zk, k = 1, . . . ,K of size M ×M , and
denote its vectorized form zk. We also introduce a high-
resolution grid of size N × N pixels, such that N = PM
for some P ≥ 1 and denote the (vectorized) super-resolved
frame k, which contains the locations of the MBs on the
high-resolution grid, by ik. Using knowledge of the PSF, the
measured frame zk is related to the super-resolved frame ik
via

zk = Hik, (2)

where H is a known matrix, based on the PSF. Estimation of
ik is achieved by solving the following convex optimization
problem,

min
ik≥0
||zk −Hik||22+λ||ik||1, (3)

where λ ≥ 0 is a regularization parameter.
In [12], the super-resolved image is constructed by solving

(3) for each frame k and accumulating all localizations. To
improve the sparse recovery process, we propose solving the
following weighted l1 minimization problem,

min
ik≥0
||zk −Hik||22+λ||Wkik||1. (4)

The matrix Wk is an N2 × N2 diagonal weights matrix
which incorporates the flow dynamics of the MBs in the
sparse recovery process, and changes with each frame.
Intuitively, this matrix assigns higher weights (penalty) to
locations less probable to contain MBs, thus forcing the
sparse recovery process to favor specific locations in the
frame, which are more likely to contain the MBs. In practice,
(4) is minimized using the FISTA algorithm [20, 21], or by
using the reweighted iterative l1 method [22].

II-B. Microbubble tracking
The (diagonal of the) weighting matrix Wk is inversely

proportional to the accumulated probability of detected MBs
from the (k−1)th frame to be found in new locations in the
kth frame. Its construction requires identifying and tracking
individual MBs. First, the state of the pth MB in frame k is
defined as spk ∈ R4 with

spk = [xpk, vx
p
k, y

p
k, vy

p
k]T .

Here, xpk and ypk are Cartesian coordinates which indicate
the position of the pth MB in frame k, and vx

p
k and vy

p
k

its respective velocity components. The accumulation of all
states of the pth MB from frame 1 to frame Kp, Tp =
[sp1, . . . , s

p
Kp

] ∈ R4×Kp , is referred to as the track of the pth
MB.

To proceed, consider an arbitrary frame, k. At this stage,
we posses all the states of Pk−1 previously tracked MBs,
s1k−1, . . . , s

Pk−1

k−1 . Given the next low-resolution frame zk,
our main two goals are:
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1) Recover the locations of the Lk MBs which are
embodied in frame zk. The number Lk of MBs in
frame k is generally different than the number of MBs
in the previous frame Lk−1.

2) Associate each newly detected MB to a previously
known track, or open a new track if no such association
is possible.

Denote the (k − 1)th super-resolved frame as ik−1 (by
minimizing (4)), whose non-zero values correspond to the
positions of the MBs present in this frame. Next, given
all previously known tracks T1, . . . ,TPk−1 , these positions
need to be associated to the tracks. The updated tracks
are essential to the formulation of Wk. Specifically, this
matching and association process is realized using the mul-
tiple hypothesis tracking (MHT) procedure [23, 24]. The
MHT algorithm, as first suggested by Reid, is considered
as one of the most popular and well known data association
techniques.

Track update and propagation is performed by applying
Kalman filtering to each track. Individual tracks represent the
history of each detected MB. This history helps propagate
the MBs to the next frame more accurately, and to obtain
improved velocity estimation. To this end, consider the
pth track. We assume a linear propagation model for the
locations of the individual MBs between consecutive frames,
given by

spk = Φspk−1 + ηp
k, Φ =


1 ∆T 0 0
0 1 0 0
0 0 1 ∆T
0 0 0 1

 , (5)

with 1/∆T being the frame-rate of the US machine. Model
(5) corresponds to the discretized version of the continuous
white noise acceleration (CWNA) model, or second-order
kinematic model [25]. Ideally, a constant velocity model
has zero acceleration, or zero second-order derivative. In
practice, CWNA assumes that the velocity of each MB has
slight perturbations, described by zero-mean white noise
with power spectral density ρ. In (5), this uncertainty is
captured by the zero-mean additive Gaussian noise vector
ηp
k, associated with a covariance matrix E{ηp

kη
pT

k } = Qp
k.

Following [25], the CWNA covariance matrix Qp
k is given

by

Qp
k =


1/3∆T 3 1/2∆T 2 0 0
1/2∆T 2 ∆T 0 0

0 0 1/3∆T 3 1/2∆T 2

0 0 1/2∆T 2 ∆T

 ρ,
where ρ is chosen empirically.

The measurement model for the pth MB is then given by

yp
k = spk−1 + ζp

k , (6)

were ζp
k is zero-mean independent i.i.d. Gaussian noise with

covariance matrix E{ζp
kζ

pT

k } = Rp
k. In practice, this matrix

is chosen to be diagonal.

From the super-resolved image ik−1 we measure the
position of the MBs. Specifically, consider a MB which is
detected in position [nk∆X , ny∆Y ], where ∆X and ∆Y

are the known sizes of each pixel in the super-resolved
image and [nk, ny] are some integers. If the MHT algorithm
associated this MB to the pth track, then ypk[1] = nk∆X

and ypk[3] = nk∆Y . Rough velocity measurements of the
MBs, or ypk[2] and ypk[4], are measured using optical flow
(OF) estimation [26] on the low-resolution movie frames, to
provide additional information for the Kalman filter.

Given the propagation (5) and the measurement (6) mod-
els, the Kalman filter update rules are now formulated. MB
state propagation to the next frame and its corresponding
propagated estimation covariance matrix are given by

spk|k−1 = Φspk−1|k−1,

Pp
k|k−1 = ΦPp

k−1|k−1Φ
T + Qp

k.
(7)

Using (7), the weighting matrix Wk is calculated as de-
scribed in Section II-C. Next, (4) is minimized to recover the
kth super-resolved frame, ik. After the association process
is finished, for each track we update its last state via the
Kalman filter equations. The Kalman gain is given by

Kp
k = Pp

k|k−1(Pp
k|k−1 + Rp

k)−1, (8)

and the innovation step along with the updated estimation
error covariance matrix are

spk|k = spk|k−1 + Kp
k(yp

k − spk|k−1)

Pp
k|k = (I4×4 −Kp

k)Pp
k|k−1.

(9)

From the innovation step (9), the states are updated as spk =
spk|k with estimation covariance matrix Pp

k = Pp
k|k.

II-C. Weighting matrix formulation
After the states for all MBs are propagated using (7) and

associated to existing or new tracks, we turn to formulate
the weighting matrix Wk. The propagated state spk|k−1
represents the position and velocity of the pth MB, and
has its associated estimation error covariance matrix Pp

k|k−1.
Based on state predictions, a spatial MB-likelihood map
Jk is formulated, by assigning probabilities drawn from an
anisotropic Gaussian distribution of which the mean and co-
variance are dictated by their respective predictions/updates
in the Kalman framework.

By aggregating the estimated positions and Gaussians
of all of the Pk−1 propagated MBs, a spatial map of
their possible true locations on the high-resolution grid is
constructed, denoted as Jk. The ijth element of this N ×N
matrix is expressed as

Jk[i, j]

=

Pk−1∑
p=1

Ape
−qp

(
1

σ
p
x
2 (i−xp0)

2−cp(i−xp0)(j−y
p
0 )+

1

σ
p
y
2 (j−yp0 )

2

)
,

(10)
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Fig. 1. Simulation results. (a) Ground truth image of bifurcating blood vessels. (b) Super-localization reconstruction,
implemented by ThunderSTORM [27]. (c) Super-resolution sparse recovery obtained by minimizing (3) via FISTA. (d)
3SAT recovery, by accumulating all recovered MB trajectories. (e) Superimposed velocity trajectories over the maximum
intensity projection (MIP) image, obtained from the 3SAT recovery. Yellow lines indicate selected profiles, presented in
Fig. 2. All reconstructions are displayed in logarithmic scale, with a dynamic range of 40dB.

Fig. 2. Intensity profiles (a. u.) taken along the yellow lines
in panels (a), (b) and (d) of Fig. 1. Peak to peak distance in
the ground truth profile is 150 µm.

with Ap =
√
|2πPp

k|k−1|, [xp0, y
p
0 ] = [spk|k−1[1], spk|k−1[3]],

σp
x = P p

k|k−1[1, 1], σp
y = P p

k|k−1[3, 3], qp = 1/(2(1− ρp2)),
cp = 2ρp/(σp

xσ
p
y) and ρp = P p

k|k−1[1, 3]/(σp
xσ

p
y). The

diagonal of the weighting matrix Wk is the inverse of the
vectorized form of Jk plus a regularization value ε, to avoid
division by zero,

Wk[i, i] =
1

Jk[bi/Nc , (i mod N)] + ε
, i = 1, . . . , N2,

(11)
where b·c is the floor operation and (x mod y) is the
modulo operation with the swap 0 → N . Vectorization of
this N ×N image is the diagonal of Wk.

III. RESULTS
Figure 1 shows reconstruction results of the simulated

dataset of flowing MBs within a simulated vascular network.
Visual inspection reveals that 3SAT recovery (panel (d))
seems the smoothest and most continuous, depicting a more
complete image of the vascular network, compared with
standard (centroid-based) super-localization (panel (b)). The
latter is a very discontinuous reconstruction, especially at the
peripheral vessels. Sparsity-based reconstruction, which does

not exploit MB kinematics and depicted in panel (c), seems
more smooth and consistent than super-localization, but not
all the vessels are connected, as presented in panel (d). The
green arrow in panel (a) indicates a bifurcating blood vessel,
which is almost non-depicted in the super-localization image
(panel (b)), and is discontinuous in panel (c) of the sparsity-
driven approach. In contrast, 3SAT (panel (d)) detects this
blood vessel completely, showing a continuous connection
to the main blood vessel. The red arrow indicates blood
vessel branching which can also be observed in all three
approaches. Panel (e) demonstrates the ability of 3SAT to
simultaneously estimate velocities, which are in the range
of 0− 3mm/s.

In Fig. 2, selected intensity profiles (a. u.) were measured
along the solid yellow lines in panels (a), (b) and (d) of
Fig. 1. In this example, it is evident that the 3SAT profile
reveals the two peaks (vessel branching) also present in the
ground truth, while the standard super-localization procedure
fails to detect the rightmost peak.

IV. CONCLUSIONS
In this work, we aim to improve super-resolution imag-

ing of low frame-rate US scanners, by reporting on ini-
tial results of a new algorithm to improve sparsity-based
super-resolution. By formulating a weighted sparse recovery
minimization problem, combined with on-line tracking of
individual MBs, we are able to improve the sparse recovery
process. 3SAT achieves a smoother depiction of the vascu-
lature and provides quantitative information regarding MB
kinematics.
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