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ABSTRACT

The real-time nature that makes diagnostic ultrasonogra-
phy so appealing to clinicians imposes strong constraints
on the computational complexity of image reconstruction
algorithms. As such, these typically rely on traditional delay-
and-sum beamforming, a low-complexity approach that un-
fortunately comes at the cost of reduced image quality as
compared to more advanced and content-adaptive beamform-
ers. Here, we propose a model-aware deep learning strategy
to ultrasound image reconstruction, which leverages knowl-
edge of minimum variance beamforming while exploiting the
efficiency of deep neural networks. Our approach yields high
quality images with strong contrast at real-time reconstruc-
tion rates. The neural network is trained using in vivo and
simulated radio frequency channel data of a single plane wave
transmit, and corresponding high-quality minimum-variance
beamformed reconstructions. Performance is benchmarked
using simulated acquisitions from the PICMUS [1] dataset,
demonstrating the convincing generalizability and image
quality of the proposed beamformer.

Index Terms— Deep Learning, Ultrasound, Adaptive
Beamforming, Plane Wave Imaging

1. INTRODUCTION

Conventional ultrasound image reconstruction often relies
on delay-and-sum (DAS) beamforming because of its low
computational complexity. While its reconstruction speed fa-
cilitates real-time imaging, DAS beamforming unfortunately
provides lower contrast and resolution as compared to more
advanced methods, mostly due to lack of content-adaptive
array apodization. To compensate for this relatively poor
performance, an image is usually obtained by compounding
multiple acquisitions or using focused scan lines, albeit at the
expense of temporal resolution.

Adaptive beamforming strategies improve on this by de-
termining optimal apodization weights based on the input sig-
nal. A well known adaptive beamformer is the minimum vari-
ance (MV) beamformer, in which the apodization weights are

continuously optimized to minimize the variance of the re-
ceived signals after apodization, while maintaining unity gain
in the desired direction. This process effectively suppresses
the power of interfering signals from undesired directions that
typically lead to cluttered images. Although MV beamform-
ing has indeed shown to significantly improve resolution and
contrast compared to DAS [2], it is also notoriously slow, re-
lying on the computationally demanding inversion of an n×n
spatial covariance matrix, having a complexity of n3 [3]. This
poses significant challenges on its real-time implementation.

Recently, developments in deep learning have spurred
revolutionary breakthroughs in domains ranging from com-
puter vision to natural language processing. Deep neural net-
works (DNNs) are trained to perform advanced tasks based
on large amounts of data. DNNs consist of many layers of
interconnected artificial neurons, which on their own perform
only simple operations, but when combined they are univer-
sal function approximators [4]. Once trained, inference is
typically fast, especially on GPU accelerated systems. DNNs
have proven to be very successful in image classification
[5], segmentation [6], speech recognition [7] and language
translation [8].

Naturally, these techniques are also receiving significant
attention in medical imaging. Although the focus has mainly
been on solving image analysis tasks such as classification
and segmentation [9], more recent developments exploit deep
learning for the image reconstruction process itself, finding
application in X-ray CT, MRI, PET and photoacoustic tomog-
raphy [10]. In ultrasound, DNNs have been used for interpo-
lating missing radio frequency (RF) data [11], reducing off-
axis scattering [12], compounding of plane waves [13] and
super-resolution microscopy [14]. However, these methods
still rely on traditional techniques that either limit image qual-
ity, or acquisition and reconstruction time. In [15], the beam-
forming step was circumvented altogether, achieving direct
segmentation of cyst phantoms from simulated RF channel
data. For most clinical applications however, a B-mode image
remains desired, though at a higher resolution and contrast
than that achieved with conventional DAS beamforming.

In this paper, we propose a new beamforming strategy that
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Table 1: Transducer Parameters

Parameter Value
Elements 128

Pitch 0.30 mm
Aperture 38.4 mm

Transmit Frequency 6.25 MHz
Sampling Frequency 25 MHz

exploits deep learning to reconstruct high-quality B-mode im-
ages from RF channel data, while significantly reducing the
computational time and complexity as compared to adaptive
beamformers. Instead of treating the DNN as a black box, we
apply a model-based approach by basing its architecture on
the MV beamforming. We can divide the full adaptive im-
age reconstruction process into three steps: 1) time-of-flight
correction, 2) adaptation and application of the apodization
weights, and 3) envelope detection. Here we focus on the
computationally most expensive of the three: calculation of
the adaptive apodization weigths.

2. TRAINING DATA

2.1. Data Acquisition

In order to reconstruct high quality images from RF data,
DNNs rely on large amounts of training data in order to con-
verge to a correct and generalized mapping from input to tar-
get. Using the Vantage system (Verasonics Inc., WA, USA)
in combination with the L11-4v linear transducer, of which
the parameters are shown in Table 1, 1000 in vivo scans of the
carotid artery and wrist were acquired where each plane wave
acquisition contains 128 RF lines comprising 2048 axial sam-
ples. Additionally, 100 simulated scans of randomly placed
point scatterers were generated, aiming to improve resolution
by providing more sparse training data.

2.2. Adaptive Beamforming

Target images are created by beamforming the recorded
datasets. Applying pixel-wise time-of-flight correction to
the received RF signal, relative to the transducer geometry,
results in a data array P (x, z) of size N , where N corre-
sponds to the number of receiving elements. A dynamically
expanding receive aperture with focus number f# = 1.0 and
angular apodization were applied to suppress signals that are
outside the receptive area [16]. A coherently compounded
DAS image can be formed by summing the array element
signals, resulting in a single value for each pixel. Instead,
tTo yield high-image-quality training targets, we adopt the
Eigen Based Minimum Variance Beamformer [17], provid-
ing content adaptive apodization weights w. An adaptively
beamformed pixel can be constructed by multiplying the con-

tributions of the receiving channels and summing the results,
which can be described as:

PBF(x, y) =

N−1∑
n=0

wn(x, y)Pn(x, y), (1)

where PBF(x,y) represents the beamformed pixel intensity.
To find an optimal set of weights, the minimization problem

min
w

wHRw

s.t. wHa = 1
(2)

is solved, where R denotes the covariance matrix calculated
over the receiving array elements and a a steering vector.
Since the data is already time-of-flight corrected by apply-
ing delays, a is a vector of ones with length N . Solving (2)
yields the following closed form solution:

w =
R−1a

aHR−1a
. (3)

To circumvent the potentially unstable numerical inversion of
R, primarily caused by the correlated nature of the RF input
signals, the covariance matrix is estimated by applying spatial
smoothing using a subaperture yl with length L:

R̂(x, z) =

∑N−L
l=0 yl[x, z]yl

H [x, z]

N − L+ 1
. (4)

Finally, diagonal loading is applied to further improve stabil-
ity. Assuming that the received signal is a combination of the
desired signal and noise, the Eigen-Decomposition of R is
taken and the signal subspace Esignal, composed of the dom-
inant eigenvectors, is projected on the weight vector to obtain
the final weights:

wEBMV = EsignalE
H
signalw. (5)

For visualization, the beamformed signals are then envelope
detected and subsequently logarithmically compressed.

3. NEURAL NETWORK

3.1. Network Architecture

Based on the the minimum variance beamformer, we train
a neural network to adaptively calculate apodization weights
corresponding to the input, thereby replacing the traditional,
computationally expensive, adaptive processor. We reshape
the time aligned RF data as visualized in Fig. 1, and process
every pixel independently. Similar to (2) the output weights
produced by the network are constrained by implementing a
loss function Lunity, penalizing deviations from unity gain.
Finally, multiplying w with the RF input, and subsequently
summing the result provides a beamformed pixel.
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Fig. 1: Schematic overview of the beamforming process using a neural network.

The proposed network consists of 4 fully connected (FC)
layers comprising 128 nodes for the outer layers and 32 for in-
ner layers, as indicated in figure Fig. 2. This dimensionality
reduction forces the network to find a more compact represen-
tation of the data which helps in noise suppression. Between
every FC layer, dropout is applied with a probability of 0.2.
The network is implemented in Python using the Keras API
with a Tensorflow (Google, CA, USA) backend. For training
the Adam optimizer was used with a learning rate of 0.001,
stochastically optimizing across a batch of pixels belonging
to a single image.

3.2. Antirectifier Activation

As of today, the rectified linear unit (ReLU) is the most
commonly used activation in DNNs because of its compu-
tational efficiency, ability to provide sparse representations
and largely avoiding vanishing gradients due to its positive
unbounded output [18]. Such a non-linearity may however
not be appropriate when dealing with RF input data, as it in-
herently leads to many ‘dying’ nodes, impairing the training
process. In contrast, a hyperbolic tangent activation is able
to preserve negative values. It is however bounded between
-1 and 1, and therefore tends to saturate quickly for signals
with a large dynamic range, resulting in a vanishing gradient
during back propagation. This behavior becomes especially
problematic in DNNs because of the substantial amount of
consecutive activations [19]. Instead, we propose to use an
Antirectifier layer 1, which combines a sample wise `2 nor-
malization with two ReLU activations, thereby concatenating
the positive and the negative part of the input. This operation
can be described as:

g(x) =

 max
(
0, x−µx

‖x−µx‖2

)
max

(
0,− x−µx

‖x−µx‖2

) , (6)

where µx denotes the mean of x. The Antirectifier effec-
tively introduces non-linearity, while preserving negative sig-
nal components as well as the dynamic range of the input.

1François Chollet, Antirectifier, Github, https://github.com/keras-
team/keras/blob/master/examples/antirectifier.py
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Fig. 2: Schematic overview of the proposed neural network.
Above each layer the number of output nodes is indicated.

3.3. Computational Complexity

When looking at the computational complexity of the DNN,
we observe that every FC layer requires 2nini+1 + ni+1

floating-point-operations (FLOPs) to compute [20], where ni
and ni+1 respectively specify the amount of input and output
nodes of the layer. ReLU activation, involving a compari-
son and multiplication, requires 2 FLOPs. Consequently, for
our network with L layers the number of required FLOPs
amounts:

F = 2n0n1 + n1︸ ︷︷ ︸
input

+

L−1∑
i=1

4nini+1 + ni+1︸ ︷︷ ︸
FC layers

+ 4ni+1︸ ︷︷ ︸
activation

. (7)

3.4. Logarithmic Loss

Conventionally, enveloped signals are logarithmically com-
pressed to create a visually more appealing and insightful
image. Consequently, typical mean-square-error or mean-
absolute-error metrics penalize errors for high intensity
pixels more stringently than for low intensity pixels. We
therefore introduce a loss function, the signed-mean-squared-
logarithmic-error (SMSLE), which better reflects deviations
from desired image properties. The beamformed data is split
into a positive (y+) and negative (y−) part on which the
mean-squared-logarithmic-error is calculated. The total loss
is the sum of these two contributions:

LSMSLE =
1

2
‖log10(y+p )− log10(y

+
t )‖22 +

1

2
‖log10(−y−p )− log10(−y−t )‖22. (8)
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Fig. 3: Left: Comparison of performance between a) Delay-and-sum (DAS) beamforming with Hanning apodization, b) Deep
neural network-based (DNN) adaptive beamforming, and c) Minimum variance (MV) beamforming. Right: Example of an in
vivo carotid artery training pair with on top the RF input and on the bottom the MV reconstructed target image.

Table 2: Resolution and contrast metrics

Parameter DAS DNN MV
FWHMlat (mm) 0.846 0.704 0.778
FWHMax (mm) 0.431 0.342 0.434

CNR (dB) 10.96 11.48 12.45

4. RESULTS AND DISCUSSION

After training on in vivo data and the simulated point scatter-
ers, the network was validated on unseen simulated images
of the PICMUS dataset in order to compare resolution and
contrast, as shown in Fig. 3. To this end the PICMUS data,
originally sampled at 20.832 MHz, was resampled to match
the in vivo training data, resulting in some artifacts.

Resolution was assessed by evaluating the averaged full-
width-at-half-maxima (FWHM) of all point scatterers. Con-
trast was estimated using the averaged contrast-to-noise ratio
(CNR) of the anechoic cysts, defined as:

CNR = 20 log10

(
|µin − µout|√
(σ2
in + σ2

out)/2

)
, (9)

where µin and µout represent the mean intensity of the inner
(red) and outer (green) regions, respectively, and σ2

in and σ2
out

the variance of the inner and outer regions. An example of
these regions of interest is indicated in Fig 3a. The resulting
metrics are shown in Table 2. We observe that the proposed

DNN beamformer is able to generate a high contrast image
comparable to the MV target, with significantly less clutter.
Additionally we see that both adaptive techniques (MV and
DNN) show an increase in CNR and resolution compared to
DAS, with the DNN even outperforming the MV target on
the latter, likely due to its ability of incorporating a generaliz-
able prior in the beamforming process by averaging statistics
of the training data. The CNR improvement however is less
pronounced since the more sparse speckle pattern of the MV
beamformer is penalized by this metric. Naturally, training
on higher quality images allows for improved network per-
formance.

From (7) we can determine that the proposed network re-
quires 74,656 FLOPs whereas 2,097,152 = 1283 FLOPs are
required for regularized MV beamforming, thus only 3.6% of
the number of operations are needed. In practice this has led
to a mean reconstruction time of 0.4 seconds for the DNN, as
opposed to 160 seconds for the MV beamformer.

5. CONCLUSION

In this work we demonstrated how deep learning can be used
to improve over conventional beamforming methods. Specifi-
cally we show that a surprisingly compact, model-based DNN
is able to enable the reconstruct high-quality ultrasound im-
ages, comparable to those obtained using a state-of-the-art
adaptive beamformer, yet at a drastically lower reconstruc-
tion time. This permits a real-time implementation of adap-
tive beamforming in ultrasound systems.
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