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ABSTRACT

Automatic removal of lung sounds from a phonocardiogram
(PCG) signal is most essential for accurately detecting and
recognizing the fundamental heart sounds such as the first
heart sound (S1) and second heart sound (S2). In this pa-
per, we propose an automated lung sound removal method
using the empirical wavelet transform (EWT). The proposed
method consists of three major stages: the EWT based sig-
nal decomposition; the frequency based mode selection; and
the signal reconstruction. The proposed method is evaluated
by synthetically adding the different lung sounds available in
Littmann lung sound library with the real-time recorded PCG
signals from 20 volunteers. The quality of the reconstructed
signals is assessed by using both objective quality assessment
metrics and subjective quality test such as mean opinion score
(MOS). For the performance comparison, two lung sound re-
moval methods have been implemented based on the ensem-
ble empirical mode decomposition (EEMD) and frequency
selective filtering techniques. The objective and subjective
evaluation results and the heart sound segmentation results
demonstrate that the EWT based lung sound removal method
outperforms the other methods. The proposed method based
heart sound segmentation scheme achieves an average sensi-
tivity (Se) of 100%, positive predictivity (Pp) of 99.22%, and
overall accuracy (OA) of 99.22%.

Index Terms— Phonocardiogram (PCG), Empirical
wavelet transform (EWT), Lung sounds

1. INTRODUCTION

Cardiac auscultation based diagnosis is becoming popular due
to the revolutionary adaptation of technology in the design of
stethoscope. Generally, the phonocardiogram (PCG) consists
of events like S1 and S2 heart sounds for the healthy adults
[1]. The S3 and S4 sounds also can be heard in healthy elder
people and children [1]. The abnormality of any person can
be heard as murmurs and splits in PCG. The presence of S3
and S4 sounds in adults indicate that there may be abnormal-
ity in the functioning of the heart [1]. The detection of all
these major events of PCG plays a key role in the diagnosis
of heart. The detection of S1/S2 heart sounds is the essential
step. These sounds are often corrupted with the lung sounds.

Thus a removal of lung sound from PCG signal is most im-
portant for accurately recognizing the S1 and S2 sounds.

In [2] adaptive line enhancement (ALE) technique is
used in which wheeze sounds and heart sounds are applied to
adaptive line enhancer for separation of heart sounds and lung
sounds. In [3] heart sounds are localized by using Shannon
entropy of lung sounds. A new entropy bound based heart
sound localization in respiratory sound is presented in [4].
In [5] the spectrum estimation along with independent com-
ponent analysis (ICA) is utilized to separate the lung sounds
and heart sounds. A modified non-negative matrix factor-
ization (NMF) approach which recovers the cardiac sounds
is described in [6]. Time-frequency filtering based approach
and singular spectrum analysis (SSA) based methods for
separation of heart sounds and lung sounds are presented in
[7]-[8]. Statistical signal processing methods to localize the
heart sounds are presented in [9]-[10]. Hidden Markov model
(HMM) based reconstruction of heart sounds is presented in
[11]. Non-stationary signal decomposition techniques such
as empirical mode decomposition (EMD), and ensemble em-
pirical mode decomposition (EEMD) are used to segment the
heart sounds in presence of lung sounds [12]-[13].

In the existing works, temporal feature based approaches
are not robust to the noise and hence may not capable to
retain the time duration information of S1 and S2 sounds.
Though the spectral estimation along with lung sounds rejec-
tion criterion based approaches are effectively reconstructing
the heart sounds, there is limitation with computational com-
plexity. The time-frequency feature based techniques are not
capable to retain the morphology of the S1 and S2 sounds
due to the lack of adaptation in filter bank. Non-stationary
decomposition based methods suffers with the stopping cri-
terion and mode mixing problem. Hence in this study an ef-
fective and robust algorithm is presented to remove the differ-
ent lung sounds interfere with fundamental S1 and S2 heart
sounds.

With the motivation of the effective heart sound segmen-
tation and murmurs classification study presented in [14], in
this work a unified framework has been established to remove
the different lung sounds from the S1 and S2 heart sounds.
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1.1. Contribution

An in-house developed PCG acquisition system is used for ac-
quiring the real-time database. The obtained real-time signal
is synthetically added with different lung sounds taken from
Littmann lung sounds library [15]. The frequency spectrum
of normal heart sounds mixed with different lung sounds
(such as healthy bronchophony, abnormal bronchophony,
monophonic wheezes, rhonchi low pitched wheezes, bron-
chovesicular, pleural rubs, crackles fine rales, crackles coarse
rales, egophony, and vesicular normal) are analyzed. With-
out using any lung sounds removal techniques, the S1 and
S2 heart sounds mixed with various lung sounds are recon-
structed by incorporating the dominant frequency range of
S1 and S2 heart sounds in the empirical wavelet transform
(EWT) based decomposition.

The rest of the paper is organized as follows: Section II
presents the proposed EWT based decomposition approach
for detection of S1 and S2 heart sounds. Section III presents
simulation results and discussion. Section IV presents the
conclusion and future work.

2. PROPOSED METHODOLOGY

Fig. 1: Illustrates the real-time PCG acquisition.

In this section the proposed EWT based decomposition
approach for the removal of lung sounds from the heart
sounds is presented. The real-time PCG signal is acquired
from the in-house developed PCG acquisition system which
is shown in Fig. 1. Microphone (ABM 713 RC) is placed into
the one of ear-tips of the stethoscope to acquire the PCG sig-
nal. The PCG acquisition system consists of different stages
like high pass filter (5 Hz cut-off frequency), amplifier (gain
of 100), and analog to digital converter (ADC). Arduino-Uno
with 1200 Hz as sampling frequency is used in order to get
the digitized PCG signal.

The acquired PCG signal is synthetically added with lung
sounds. The mixed signal is pre-processed to remove the
mean and normalize the amplitude. The spectrum of the nor-
mal PCG, abnormal PCG, and PCG mixed with lung sounds
are shown in Fig. 2. From the spectrum, it is clear that
the most of the energy of the S1 and S2 sounds are con-
centric between the 10-70 Hz whereas lung sounds are con-
centric between the 100-500 Hz. With this spectral informa-
tion, EWT based decomposition is used for reconstruction of
S1 and S2 heart sounds by automatically removing the lung

sounds. EWT based decomposition is used in applications
like seismic data analysis [16], electroencephalogram (EEG)
seizure detection [17], and power quality analysis [18]. A
brief description of EWT is presented in the next subsec-
tion and the EWT based decomposition for reconstruction and
Shannon entropy envelogram (SEE) based detection of S1 and
S2 heart sounds in presence of lung sounds is presented in the
subsequent subsection.

2.1. Empirical wavelet transform

In this subsection a brief description of EWT is presented and
the detailed description can be found in [19]. EWT builds
an adaptive filter banks for the effective decomposition of
the input signal. EWT comprises of estimating the spectrum
components, accurately segmenting the spectrum, determin-
ing the boundaries of the Fourier spectrum, and defining the
filter banks. The scaling function φ1 and empirical wavelets
ψi in the frequency domain are expressed as [19],

φ1(ω) =


1, if |ω| 6 (1− γ)Ω1

cos(π2β(γ,Ω1)), if (1− γ)Ω1 6 |ω| 6 (1 + γ)Ω1

0, otherwise
(1)

ψi(ω) =


1, if (1 + γ)Ωi 6 |ω| 6 (1− γ)Ωi+1

cos(π2β(γ,Ωi+1)), if (1− γ)Ωi+1 6 |ω| 6 (1 + γ)Ωi+1

sin(π2β(γ,Ωi)), if (1− γ)Ωi 6 |ω| 6 (1 + γ)Ωi

0, otherwise
(2)

where γ is a overlap controlling parameter, β(γ,Ωi) =
β( 1

2γΩi(|ω| − (1 − γ)Ωi)). Ωi is the boundaries given
by [19],

Ωi =
ωi + ωi+1

2
for 1 6 i 6 N − 1 (3)

where ωi, ωi+1 are the frequencies, and N is the number of
segments.

The approximation and detailed coefficients denoted as
I and D are obtained by inner dot product of input signal
p(t) with scaling and empirical wavelet functions respectively
which is basically inverse fast Fourier transform (IFFT) and
are given by [19],

I =

∫
p(τ)φ1(τ − t)dτ = IFFT (P (ω)× φ1(ω)) (4)

D =

∫
p(τ)ψi(τ − t)dτ = IFFT (P (ω)× ψi(ω)) (5)

Hence it is clear that the EWT approach is effective in
analyzing the real-time signal consists of multiple frequency
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components. The study made in [19] demonstrates that the
EWT has better frequency resolution than EMD. The heart
sounds analysis using EWT presented in [14] gives a promis-
ing approach for removal of physiological interference from
heart sounds. In the next subsection the effectiveness of the
EWT decomposition based lung sounds separation from the
heart sounds is presented.

2.2. EWT decomposition based lung sounds separation
from heart sounds

The steps involved in the EWT based decomposition and sep-
aration of lung sounds from the heart sounds is as follows:

• Step B.0: Acquire the real-time PCG signal and add
lung sounds synthetically

• Step B.1: Estimate the spectrum of the mixture signal

• Step B.2: Determine the frequency span where the S1
and S2 sounds are dominant

• Step B.3: Segment the band where the S1 and S2 heart
sounds gets the local maximum in the spectrum

• Step B.4: Keep the spectrum components other than the
dominant S1 and S2 sounds as residual signal

• Step B.5: Compute the boundaries using (3)

• Step B.6: Build the scaling function and wavelet filter
bank in frequency domain using (1) and (2)

• Step B.7: Get back the reconstructed PCG with only S1
and S2 heart sounds using (4) and (5)
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Fig. 2: Illustrates the spectrum of heart sounds mixed with different
lung sounds. (a1)-(a3) Frequency spectrum of fundamental heart
sounds. (b1)-(b3) Frequency spectrum of abnormal heart sounds.
(c1)-(c3) Frequency spectrum of Heart sounds with different lung
sounds. (d1)-(d3) Frequency spectrum of different lung sounds.

An example of an effective reconstruction and detection
of S1 and S2 sounds using EWT is shown in Fig. 3. The
wheezes sound is synthetically added to heart sounds and is
shown in Fig. 3.(a3). As per the spectral information in Fig.
2, in the EWT based decomposition the boundaries of the
spectrum are selected between 10-70 Hz and the decomposed
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Fig. 3: Illustrates the EWT based effective reconstruction and detec-
tion of S1 and S2 heart sounds. (a1) Normal heart sounds. (a2) lung
sound. (a3) mixed heart sound and lung sound. (a4) EWT decom-
posed based reconstructed S1 and S2 heart sounds. (a5) Residual
signal. (a6) SSEE based S1 and S2 detection.

output signal within this range of frequencies is shown in Fig.
3.(a4). From Fig. 3.(a4), it is observed that the S1 and S2
heart sounds are effectively reconstructed. To show the other
frequency components in the mixed signal, the residual signal
is shown in Fig. 3(a5). From Fig. 3(a5), it is understood that
the lung sound signals are reconstructed. So it is observed
that the EWT based decomposition not only useful to remove
the lung sounds from heart sounds but also useful for the lung
sound analysis.

2.3. Detection of S1 and S2 heart sounds using Shannon
entropy envelogram (SEE)

The reconstructed S1 and S2 heart sound signal P̂S1,S2[n], is
subjected to a non-linear amplitude transformation to empha-
size the informative amplitude content present in the signal.
In this work, Shannon entropy is considered for non-linear
transformation. Shannon entropy is chosen because it en-
hances the informative low amplitude segments of the heart
sound. Since this feature will also enhance the low amplitude
noise, P̂S1,S2[n] is subjected to a fixed threshold to suppress
the noise. The threshold signal P̂th[n] is given as,

P̂th[n] =

{
P̂S1,S2[n], if P̂S1,S2[n] > γth

0, otherwise
(6)

The value of γth is chosen as 0.1 by considering the S1
and S2 amplitude levels. The Shannon entropy envelope
(SEE) is computed as,

PSh[n] = −|P̂th[n]|log|(P̂th[n])| (7)

The smoothen Shannon entropy envelope (SSEE) is ob-
tained by smoothening PSh[n] using a zero phase forward and
reverse filter (for filtering, a rectangular window of length 50
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ms with overlap of 1 ms is used). Then the gated signal is
computed as follows:

P̂g[n] =

{
1, if P̂Sh[n] > γsh

0, otherwise
(8)

where γsh is chosen as the mean value of P̂Sh[n].
The gated signal computed from the SSEE is shown in

Fig. 3.(a6).

3. RESULTS AND DISCUSSION

The performance of the proposed algorithm is analyzed using
MATLAB 2014 software simulations. For performance anal-
ysis, both real time PCG signals and standard lung sound sig-
nals from Littmann lung sounds library are considered. For
real time PCG recording, in-house developed PCG acquisi-
tion system shown in Fig. 1. is used. 20 male subjects of the
age ranging between 18-35 years are voluntarily participated
to give their database. While recording (30 Seconds of dura-
tion) the data, the subject is in sitting position and the record-
ing environment is free from the external sound disturbances.
All the recordings are carried out under the observation of ex-
perienced medical practitioner.

The recorded databases are synthetically added with
the 12 various lung sounds collected from the Littmann
lung sound library. The proposed EWT based decomposi-
tion method is compared with the singular spectrum anal-
ysis (SSA), and ensemble empirical mode decomposition
(EEMD) methods. The effectiveness of the EWT based de-
composition is shown in Fig. 4. In all these methods, the
reconstructed signals are further processed for detecting the
S1 and S2 heart sounds. The performance of the methods
are summarized in Table 1 in terms of standard benchmark
performance metrics such as Sensitivity (Se), positive pre-
dictivity (Pp), and overall accuracy (OA) are calculated by,

Se. =
TP

TP + FN
× 100 (9)

Pp =
TP

TP + FP
× 100 (10)

OA =
TP

TP + FP + FN
× 100 (11)

where ‘TP ’ indicates the true positive, ‘FP ’ indicates the
false positive and ‘FN ’ indicates the false negative. The pro-
posed EWT based method has 100 % sensitivity, 99.22 % of
positive predictivity as well as accuracy. The signal recon-
struction quality parameters such as root mean square error
(RMSE), maximum error (ME), signal to noise ratio (SNR
in dB) are presented in Table 2. The performance metrics in
Table 1 infers that the proposed EWT based decomposition
method has great ability of resolution in frequency domain
for detecting the S1 and S2 heart sounds in presence of lung
sounds.
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Fig. 4: Illustrates the effectiveness of EWT decomposition. (a1),
(a2), and (a3) Heart sounds signal which is mixed with stridor lung
sound. (b1), (b2), and (b3) decomposed signals using EWT, SSA,
and EEMD. (c1), (c2), and (c3) residuals obtained using three differ-
ent methods.

Table 1: Performance metrics of the fundamental S1 and S2 heart
sound reconstruction with three different methods.

Method Seg. TP FP FN Se(%) Pp(%) OA(%)
EWT+SEE+A.Th

(Proposed) 1920 1920 15 0 100 99.22 99.22

EEMD+SEE+A.Th 1920 1907 122 13 99.32 93.99 93.40
SSA+SEE+A.Th 1920 1882 334 38 98.02 84.96 83.54

Table 2: Quality parameters.

Rec.
SSA EEMD Proposed (EWT)

RMSE ME SNR RMSE ME SNR RMSE ME SNR
1 0.16 0.80 3.74 0.16 0.84 3.74 0.07 0.58 17.94
2 0.19 0.98 0.08 0.15 0.80 4.79 0.07 0.59 17.89
3 0.19 0.99 -0.04 0.13 0.71 6.75 0.07 0.58 18.09
4 0.19 1.05 -0.20 0.15 0.81 4.31 0.08 0.59 17.49
5 0.19 0.98 0.17 0.15 0.83 5.06 0.08 0.59 17.48

Avg. 0.18 0.96 0.75 0.14 0.79 4.93 0.07 0.58 17.77

4. CONCLUSION

This paper presents an automated EWT based method for
removal of lung sound from PCG signal. For performance
comparison, the two lung sound removal methods are imple-
mented based on the singular spectrum analysis (SSA) and
EEMD techniques. The performance of the methods are eval-
uated using both synthetically generated PCG signals cor-
rupted with lung sounds and the real-time PCG signals. The
evaluation results show that the proposed method outperforms
the SSA and EEMD based methods in terms of achieving bet-
ter objective quality metrics and segmentation performance.
The proposed method had an average accuracy of 99.22% in
detecting the S1 and S2 sounds in presence of lung sounds
whereas EEMD method and SSA methods had 93.40% and
83.54% respectively.
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