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ABSTRACT 

 

This paper puts forward a LSTM and CNN based assemble 

neural network framework to distinguish different types of 

arrhythmias by integrating stacked bidirectional long shot-

term memory (SB-LSTM) network and two-dimensional 

convolutional neural network (TD-CNN). Particularly, SB-

LSTM is used to mine the long-term dependencies contained 

in electrocardiogram (ECG) from two directions to model the 

overall variation trends of ECG, while TD-CNN aims at 

extracting local information of ECG to characterize the local 

features of ECG. Moreover, we design an ensemble empirical 

mode decomposition (EEMD) based signal decomposition 

layer and a support vector machine based intermediate result 

fusion layer, by which ECG can be analyzed more effectively, 

and the final classification results can be more accurate and 

robust. Experimental results on public INCART arrhythmia 

database show that our model surpasses three state-of-the-art 

methods, and obtains 99.1% of accuracy, 99.3% of sensitivity 

and 98.5% of specificity. 

 

Index Terms— Arrhythmia Classification, LSTM, CNN, 

ECG, Ensemble Empirical Mode Decomposition (EEMD) 

 

1. INTRODUCTION 

 

Arrhythmias are irregular heart rhythms caused by abnormal 

electrical activities of the heart, which can induce serious 

complications, such as stroke, heart failure, sudden cardiac 

death [1], and result in over 4.7 million death in the US and 

EU per year [2]. Clinically, heartbeats are usually categorized 

into many different types, such as normal beat (N), premature 

ventricular contraction (PVC), right bundle branch block beat 

(RBBB), atrial premature contraction (APC), etc [3]. Each of 

them shows different symptoms and requires different kind 

of treatments. Hence, it is crucial to classify different types of 

arrhythmias accurately, so as to provide effective and timely 

treatments [4]. 

Electrocardiogram (ECG) is a non-invasive and easily 

accessible physiological signal, has been diffusely utilized in 

existing computer-aided arrhythmias classification methods 

[5-11]. These methods were designed to follow the classical 

pattern recognition paradigm. To be specific, they first extract 

several features to model the fluctuation patterns of ECG by 

using techniques like time-frequency analysis [5, 6], spectral 

analysis [7], and so on. These features are then processed by 

feature selection algorithms to get the most informative ones. 

Finally, classifiers such as random forest [8], neural networks 

[9] was built based on the selected features. These methods 

have obtained good classification performance, however, the 

performance is hard to be further boosted. It’s mainly because 

the noise in ECG can distort the waveform of ECG, hence the 

values of the extracted features may be not valid [8]; 2) ECG 

usually shows obvious inter- and intra-subjects variability, so 

the predesigned features may not be capable of characterizing 

every heartbeat accurately [8]. By comparison, deep learning-

based approaches do not require explicit feature extraction 

procedure, and usually can obtain better performance [10, 11]. 

A normal heartbeat usually consists of P, Q, R, S, and T 

waves [11]. Different arrhythmias present some differences 

on these five waves. For example, the Fig. 1 of [10] indicates 

that the T wave of ventricular ectopic beat are significantly 

higher than that of non-ectopic beat. In other words, different 

arrhythmias types exhibit quite different overall variation 

trends in ECG wave. In addition, there are also obvious local 

differences between different arrhythmias types. For instance, 

the Fig. 1 of [10] shows that the R wave of non-ectopic beat 

is sharp, while that of supra-ventricular beat and unknown 

beat usually show some volatility. To sum up, both the overall 

variation trends and local features of ECG are useful for 

distinguishing different arrhythmias types. However, most 

existing studies only focus on one of them [10, 11], which we 

argue is hard to characterize the fluctuation patterns of ECG 

accurately. 

To this end, this paper proposes a hybrid neural network-

based arrhythmias classification model. The promising long 

short-term memory (LSTM) network [11] and convolutional 

neural network (CNN) [12] are used in the model. Concretely, 

we design a stacked bidirectional LSTM (SB-LSTM) layer 

and a two-dimensional CNN (TD-CNN) layer. These two 

layers are employed to extract the overall variation trends and 

local features respectively, aiming to model the fluctuation 

pattern of ECG more accurately. In addition, we design an 
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ensemble empirical mode decomposition (EEMD) [13] based 

ECG signal decomposition layer (SDL), and a SVM [14] 

based intermediate classification result fusion layer (FL). 

SDL is utilized to analyze ECG from multiple time-frequency 

resolutions, and obtains a set of intermediate classification 

results which are then fused into a final result by using FL. 

The proposed model achieves higher classification accuracy 

based on INCART arrhythmia dataset [3]. 

 

2. METHOD 

 

2.1. The Arrhythmias Classification Model Framework 

The framework of our model consists of four layers, i.e., SDL, 

SB-LSTM layer, TD-CNN layer, and FL, which is displayed 

in Fig. 1. Concretely, the ECG signal is first decomposed into 

multiple intrinsic mode functions (IMFs). Then, the IMFs 

with lower frequency and higher frequency are respectively 

fed into SB-LSTM layer and TD-CNN layer, with each IMF 

obtains an intermediate classification result. Finally, they are 

fused into a final classification result via FL. At a holistic 

level, the proposed model resembles a bagging classifier [15-

16]. Specifically, SDL is used to create new instances, SB-

LSTM and TD-CNN play the role of weak classifiers, and FL 

is used to fuse the intermediate classification results. 

2.2. The ECG Signal Decomposition Layer (SDL) 

EEMD is a noise assisted signal processing technique which 

is suitable for analyzing non-linear signals [13]. EEMD has 

been successfully applied in many fields, including biological 

signal analysis [17-20]. In SDL, we use EEMD to decompose 

ECG into multiple time-frequency resolutions, in order to 

extract more hidden information from ECG for classification. 

The EEMD analysis includes 3 main steps. First, we add 

white noise whose average value is zero to the ECG signal. 

𝑥𝑡(𝑡) = 𝑥(𝑡) + 𝑛𝑖(𝑡)                           (1) 
where 𝑥𝑖(𝑡) is the 𝑖𝑡ℎ ECG sample added with the 𝑖𝑡ℎ white 

noise. Second, we utilize the Empirical mode decomposition 

(EMD) algorithm [3] to decompose the 𝑥𝑖(𝑡)  into several 

IMFs and a residue. Let 𝑐𝑖𝑗(𝑡) and 𝑟𝑖(𝑡) are the 𝑗𝑡ℎ IMF after 

decomposition and the residue, respectively. Third, calculate 

the above corresponding IMFs and fuse them by utilizing an 

ensemble manner as follows: 

𝑐𝑗(𝑡) =
1

𝑁
∑ 𝑐𝑖𝑗(𝑡)

𝑁

𝑖=1
                           (2) 

where 𝑐𝑗(𝑡) denotes the 𝑗𝑡ℎ IMF of EEMD. 

In this study, a total of 6 IMFs are obtained. Particularly, 

the first three IMFs are with higher frequency which contain 

more information about the detailed information of the ECG 

signal, while the last three IMFs are with lower frequency 

which contain more information about the trends of the ECG 

signal. Finally, the obtained IMFs are fed into the following 

network for further processing. 

2.3. The Stacked Bidirectional LSTM (SB-LSTM) Layer 

Medically, each heartbeat sequentially produces P, Q, R, S, T 

wave components in ECG [6]. The Fig.1 of [10] shows that 

although the same wave components derived from different 

arrhythmias types are not that different from each other, the 

waveform of the whole heartbeat is quite different from each 

other from an overall perspective. To model this kind of long-

term fluctuation pattern of ECG, the LSTM was employed. 

LSTM is a kind of recurrent neural network (RNN). It 

mitigates the problem of vanishing gradient of RNN, and is 

particularly suitable for processing time series signals [21-23]. 

The internal structure of LSTM cell is illustrated in Fig. 2, for 

a given input sequence xt at time t, the corresponding output 

ℎ𝑡 and internal state 𝑐𝑡 can be calculated as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                        (3) 
𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                         (4) 
𝑜𝑡 = 𝜎(𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                        (5) 
𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀ 𝑡𝑎𝑛ℎ(𝑊𝑐 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)    (6) 
ℎ𝑡 = 𝑜𝑡 ⨀ 𝑡𝑎𝑛ℎ(𝑐𝑡)                                                       (7) 

where 𝑓𝑡, 𝑖𝑡 and 𝑜𝑡 are the forget gate, input gate and output 

gate of LSTM respectively, which jointly control the update 

of the ℎ𝑡 . Specifically, 𝑓𝑡  is utilized to discard useless 

information contained in LSTM’s past state, 𝑖𝑡  determines 

what information should be added to LSTM’s current state, 

and 𝑜𝑡 decides what information should be output. Benefiting 

from these three gates, the long-term dependencies in time 

series can be effectively extracted. 

In this study, we design a SB-LSTM to characterize the 

overall variation trends of ECG. Concretely, the proposed 

SB-LSTM is comprised of three LSTM layers, and the output 

of non-last layers is used as the input of the next layer. Each 

layer contains two LSTM cells that have opposite directions, 

aiming at capturing the forward and backward dependency 

respectively. Specifically, each LSTM has 32 neurons, which 

 
Fig. 1: The proposed arrhythmias classification model framework.  
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Fig. 2: An illustration of the internal structure of LSTM cell. 
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is the trade-off between the fitting ability and the complexity 

of the network. In order to reserve more useful information, 

we fuse the output of SB-LSTM corresponding to each time 

step to a one-dimensional vector as follows: 

𝑌 = [𝑌1,𝑓 , 𝑌1,𝑏 , … 𝑌𝑖.𝑓 , 𝑌𝑖,𝑏 , … , 𝑌𝑁,𝑓 , 𝑌𝑁,𝑏],            (8) 

where 𝑌𝑖,𝑓 and 𝑌𝑖,𝑏 are the forward and backward dependency 

corresponding to the 𝑖𝑡ℎ ECG sample. Furthermore, to avoid 

the impact of detailed information of ECG on the accuracy of 

the extracted long-term dependencies, we feed the three IMFs 

with lower frequency to mutually independent SB-LSTMs. 

Finally, each IMF got an intermediate classification result by 

using a fully-connected layer (FCL) containing five neurons 

and a softmax function [11, 23]. 

2.4. The Two-dimensional CNN (TD-CNN) layer 

Recently, CNN has shown powerful ability to extract local 

spatial-time features in image recognition field [24]. Hence, 

we design a TD-CNN to mine short-term fluctuation patterns 

of ECG, in order to depict ECG more accurately [25]. 

CNN is the first neural network that is characterized by 

employing hierarchical neuron layers to effectively extract 

local features from data. It has been successfully applied to 

many research areas, including image recognition [24]. In 

CNN, the spatial features are extracted by convolutional 

layers (CLs). Let 𝐹𝑖,𝑗,𝑘 and 𝐾𝑖,𝑗,𝑘 denote the element of the 𝑖𝑡ℎ 

row, 𝑗𝑡ℎ column and 𝑘𝑡ℎ channel of the feature map F, and 

the corresponding convolution kernel K respectively, the 𝐴𝑖,𝑗, 

i.e., the element of the 𝑖𝑡ℎ  row and 𝑗𝑡ℎ  column of the 

convolved result A can be computed as follows: 

𝐴𝑖,𝑗 = 𝜎 (∑ ∑ ∑ 𝐾𝑑,𝑚,𝑛 · 𝐹𝑑,𝑖+𝑚,𝑗+𝑛

𝑊−1

𝑛=0

𝐻−1

𝑚=0

𝐶−1

𝑑=0

+ 𝑤𝑏),   (9) 

The proposed TD-CNN consists of two convolutional 

layers, one max-pooling layer, one average-pooling layer and 

two FCLs. In particular, the convolutional layers are used to 

extract local features from input data, while the two pooling 

layers aim to learn higher level features without enlarging the 

size of the filters. Concretely, the two convolutional layer are 

the same, and contains 32 filters whose size are 4×4 with a 

stride of 2. The size of the two pooling layers are set to 2×2. 

The two FCLs contains 32 and 5 neurons respectively. It’s 

notable that all these hyper parameters are set empirically. In 

this study, the three IMFs with higher frequency obtained in 

SDL are fed into three mutually independent TD-CNN, so as 

to eliminate the trend-related information from ECG. In 

particularly, to adapt to the input format of the TD-CNN, we 

reshape each IMF into a square matrix-like two-dimensional 

vector by stacking itself in column. Finally, each IMF gets an 

intermediate classification result by using a softmax function. 

2.5. The Fusion Layer (FL) 

In our arrhythmias classification framework, the ECG signal 

segment corresponding to each heartbeat is decomposed into 

several IMFs. The IMFs with lower higher frequency are fed 

into SB-LSTM and TD-CNN respectively, and finally obtain 

a mutually intermediate classification result. However, these 

results may be not the same. In order to obtain more accurate 

classification results, we design a support vector machine 

(SVM) based fusion layer to fuse these results into a final one. 

SVM is an effective machine learning based classifier, which 

has been widely used to tackle classification and regression 

problems [26]. Usually, SVM projects instances into a high-

dimensional feature space, and then utilizes a hyperplane to 

divide them into two classes. In this study, the intermediate 

classification results obtained by each SB-LSTM and TD-

CNN are first integrated into a feature vector, which is then 

fed into a SVM classifier to get the final classification result. 

In this way, we can take advantages of the fitting ability of 

multiple SB-LSTMs and TD-CNNs, and hence obtain higher 

classification accuracy. 

 

3. EXPERIMENTAL EVALUATION 

 

3.1. Dataset and Data Preprocessing 

The public INCART database [3] is utilized to evaluate the 

performance of our model. It consists of 75 annotated ECG 

segments extracted from 32 Holter records (sampled at 257 

Hz) collected from 17 men and 15 women (aged 18-80). Each 

of them lasts 30 minutes and contains 12 leads, with only the 

first lead used in this study. Four types of beats including N, 

PVC, RBBB and APC are extracted from the dataset. First, 

we use the 256 samples around the P-peaks to represent each 

heartbeat [10]. Particularly, the first and the last beats which 

may lose necessary ECG wave components and the beats that 

do not contains enough samples are discarded. Afterwards, 

the SOMTE algorithm is utilized [27] to synthesize heartbeats 

for the class with fewer instance (i.e., PVC, RBBB and APC). 

Finally, a total of 598828 heartbeats are obtained, with each 

arrhythmia type has the same number of heartbeats (149707). 

3.2. Experimental Setup 

We represent the class label by utilizing the one-hot encoding, 

and employ the categorical cross-entropy function to denote 

the loss of the network as follows: 

ℒ =
1

𝑁
∑ (𝑦𝑖 𝑙𝑜𝑔(𝑦�̂�) + (1 − 𝑦𝑖)𝑙𝑜𝑔 (1 − 𝑦�̂�)

𝑁

𝑖=1
),   (10) 

where 𝑁 denotes the number of heartbeats in a mini-batch, 

while 𝑦𝑖  and 𝑦�̂� represent the true label and predicted label of 

the 𝑖𝑡ℎ heartbeat, respectively. The LeakyRelu [10] is used as 

activation function so as to avoid shielding negative outputs, 

which is conducive to retaining more useful information. We 

employ the Adam optimizer [11] to update the parameters. In 

particular, a dropout layer is applied to avoid over-fitting. In 

addition, decayed learning rate is utilized exponentially every 

1000 iterations to accelerate the training process, where the 

learning rate is initialized as 0.002 with a decay factor of 0.9. 

We randomly divide the dataset into training set, validation 

set and test set at a ratio of 0.7:0.1:0.2. Specifically, we record 

the performance every 100 iterations and the network with 

the highest accuracy is chosen as the final model. The dataset 

five times 

Accuracy (ACC), sensitivity (SEN) and specificity (SPE) 

are used as the evaluation metrics. Obviously, a good model 

should obtain high ACC, SEN and SPE simultaneously. 
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3.3. Evaluation Results 

3.3.1. Comparison with state-of-the-art models 

We compare the proposed model with 3 baselines proposed 

in [7], [10] and [11]. In particular, Ref. [7] is a traditional 

feature engineering based approach, while Ref. [10] and Ref. 

[11] are deep neural network based models where LSTM and 

CNN are separately employed. We recurred these baselines 

based on our balanced dataset so as to guarantee the fairness 

of the comparison. As shown in Table 1, our model achieves 

the highest performance, and surpasses the method in [7] by 

5.6% of ACC, 5.2% of SEN and 6.8% of SPE. Although the 

LSTM-based model [11] and the CNN-based model [10] can 

obtain better results comparing with the method in [7], their 

performance is still lower than our model, which indicates 

that extracting only overall variation trends or local features 

is difficult to characterize the fluctuation pattern of ECG 

comprehensively. In addition, the performance of our model 

and the methods proposed in [10] and [11] are better than that 

of [7], which shows the stronger information extraction and 

fitting ability of deep neural network. 

3.3.2. Effect of Different Network Layer 

To evaluate the contribution of designed network layers, we 

display the performance of different combinations of network 

layers in Table 2, from which we find that: 1) the SB-LSTM 

layer obtains similar performance when compared with TD-

CNN, which indicates that the overall variation trends and the 

local features of ECG are equally important for distinguishing 

different arrhythmias types; 2) the combination of SB-LSTM 

and TD-CNN bring more than 2% performance improvement, 

which means that more useful information can be extracted 

in this case; 3) benefiting from the utilization of SDL and FL, 

the performance reaches 99.1% of ACC, 99.3% of SEN and 

98.5% of SPE, which shows the effectiveness of our bagging 

classifier-like assemble neural network architecture. 

3.3.1. Comparison with Similar Network Structures 

To demonstrate the superiority of our network architecture, we 

compare it with some similar network structures by replacing 

the designed network layers with similar variants. Concretely, 

for SB-LSTM, three variants, i.e., stacked directional LSTM 

(SD-LSTM), unstacked bidirectional LSTM (UB-LSTM) and 

unstacked directional LSTM (UD-LSTM) are created. As for 

TD-CNN, we use a one-dimensional CNN layer (OD-CNN) 

as the variant. In addition, the inclusion or exclusion of SDL 

and FL are also considered, which are denoted as with-SF and 

without-SF, respectively. Eventually, 15 similar structures are 

obtained, whose performance is summarized in Table 3. 

Table 3 shows that our network structure achieves the best 

classification performance. In particular, three observations 

are obtained: 1) the use of SDL and FL significantly improves 

the classification performance no matter which kind of LSTM 

layer and CNN layer are utilized, which maybe because that 

decomposing ECG into IMFs is conducive to exposing more 

hidden information for classification, and that the utilization 

of FL can effectively eliminate the bias of each intermediate 

classification result and hence yields more accurate results. 2) 

SB-LSTM and UD-LSTM respectively obtain the highest and 

lowest performance among all LSTM-based variants. It may 

be due to that SB-LSTM can extract long-term dependencies 

from two directions, which is helpful for characterizing the 

overall variation trends of ECG signal more accurately. 3) 

The performance of TD-CNN is higher than that of OD-CNN 

in most cases, which is because that the input of TD-CNN is 

comprised of the outputs of LSTM-based layer corresponding 

to each time step while the input of OD-CNN only contains 

the output corresponding to the last time step, therefore, more 

useful information can be mined by TD-CNN. 

 

4. CONCLUSION AND FUTURE WORK 

 

In this paper, a novel arrhythmias classification model is 

proposed based on SB-LSTM and TD-CNN. It’s an end-to-

end method that doesn’t require complex feature extraction 

and feature selection procedures. Experimental results shows 

that the integration of SB-LSTM and TD-CNN brings about 

2% performance improvement. Moreover, the decomposition 

of ECG and the fusion of intermediate classification results 

are also proved to be useful. In addition, our model has the 

optimal network structure, and yield unbiased classification 

results. Finally, it outperforms 3 state-of-the-art methods, and 

obtains 99.1% of accuracy, 99.3% of sensitivity and 98.5% 

of specificity. Future work focuses on designing a simpler but 

more effective network structure. 

Table 3: Comparison with Similar Network Structures. 

Network Structures ACC (%) SEN (%) SPE (%) 

With_SF 

UD-LSTM 
OD-CNN 91.3 91.4 90.9 

TD-CNN 95.2 95.7 93.7 

UB-LSTM 
OD-CNN 93.9 94.6 91.7 

TD-CNN 96.5 96.8 95.8 

SU-LSTM 
OD-CNN 96.0 96.6 94.2 

TD-CNN 97.6 97.8 97.1 

SB-LSTM 
OD-CNN 96.4 96.6 95.8 

TD-CNN 99.1 99.3 98.5 

Without-SF 

UD-LSTM 
OD-CNN 91.5 91.7 91.0 

TD-CNN 92.1 92.1 91.9 

UB-LSTM 
OD-CNN 91.0 91.4 90.0 

TD-CNN 93.0 93.2 92.5 

SU-LSTM 
OD-CNN 92.7 93.8 89.4 

TD-CNN 93.1 93.5 91.9 

SB-LSTM 
OD-CNN 94.4 94.7 93.5 

TD-CNN 95.6 95.8 94.9 

 

Table 2:  The effect of different network layers.  

Combinations of Layers ACC (%) SEN (%) SPE (%) 

SB-LSTM 95.2 95.9 9.31 

TD-CNN 95.0 95.4 93.7 

SB-LSTM + TD-CNN 97.2 97.4 96.4 
SDL+SB-LSTM+TD-CNN+FL 99.1 99.3 98.5 

 

Table 1: Comparison with state-of-the-art models. 

Combinations of Layers ACC (%) SEN (%) SPE (%) 

Our Method 99.1 99.3 98.5 

Elhaj et al. [7] 93.5 94.1 91.7 
Acharya et al. [10] 95.0 95.3 94.0 

Yildirim et al. [11] 96.3 97.0 94.3 
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