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ABSTRACT
Detection of P-waves in electrocardiogram (ECG) signals is
of great importance to cardiologists in order to help them
diagnosing arrhythmias such as atrial fibrillation. This pa-
per proposes an end-to-end deep learning approach for detec-
tion of P-waves in ECG signals. Four different deep Recur-
rent Neural Networks (RNNs), namely, the Long-Short Term
Memory (LSTM) are used in an ensemble framework. Each
of these networks are trained to extract the useful features
from raw ECG signals and determine the absence/presence of
P-waves. Outputs of these classifiers are then combined for
final detection of the P-waves. The proposed algorithm was
trained and validated on a database which consists of more
than 111000 annotated heart beats and the results show con-
sistently high classification accuracy and sensitivity of around
98.48% and 97.22%, respectively.

Index Terms— Deep learning, Ensemble learning, Long-
Short Term Memory, Electrocardiogram, P-waves detection.

1. INTRODUCTION

Analysis of electrocardiogram (ECG) signals is considered
an important step in diagnosing cardiac diseases, especially
the atrial fibrillation (AFIB), which is one of the most com-
mon cardiac arrhythmias among elderly population [1]. De-
mographics of western countries is alarming with respect to
cardiac health issues [2, 3]. Since P-wave absence in ECG is
one of the clinically useful informations for the detection of
AFIB, P-wave delineation is of great importance in practice.

One of the most common ways for physicians to delineate
P-waves is through visual examination of the ECG record-
ings. However, it is not always easy and in most cases cum-
bersome to analyse these huge amounts of data. Therefore, it
is required to develop analytic methods to automatically anal-
yse these ECG signals, which help accelerating the process
of accurate detection of P-waves. Various state-of-the-art al-
gorithms for detecting P-waves have been introduced in the
literature. Dubois et al. used a machine learning method,
namely, the generalized orthogonal forward regression with
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Gaussian mesa function models for automatic ECG wave ex-
traction [4]. In [5], the possibility of automatic ECG delin-
eation using phasor transform was studied. Lin et al. pro-
posed a Bayesian model for P- and T-waves detection which
showed a higher accuracy compared to previously published
algorithms but at a higher computational cost [6]. In a recent
study, Gonzáles et al. investigated ECG waveform segmen-
tation using adaptive slope Gaussian detection [7]. In [8], a
template based model has been applied for detecting the P-
and T-waves.

Ensemble learning methods are being used for prognos-
tics and decision making in various applications [9, 10]. The
three main parts of ensemble learning systems are [11]: (i)
sampling from a dataset to make a training set, (ii) training
a group of classifiers, and (iii) combining the output of clas-
sifiers. It has been shown in the literature that using ensem-
ble learning increases the chance of selecting more accurate
classifiers by avoiding selection of a single weak classifier
[11, 12]

In this work, four different deep Long-Short Term Mem-
ory (LSTM) classifiers have been trained using raw ECG
signals to distinguish between heart beats with P-waves (P)
and without P-waves (non-P). The first two classifiers are the
conventional LSTM networks [13] with different classifica-
tion layers; cross entropy (LSTM-CE) and sum of squares
error (LSTM-SSE). The other two are bidirectional LSTMs
[14] (BiLSTM-CE and BiLSTM-SSE), which also uses CE
and SSE as classification layers. Each of these classifiers is
trained separately using 5-fold cross validation before the out-
puts are combined using the Dempster-Shafer theory (DST)
[15] to enhance the classification accuracy.

2. MATERIALS AND METHODS

2.1. Preprocessing

ECG signals are filtered to remove noise and baseline wanders
[16]. PhysioNet WFDB Toolbox is used to detect the R peaks
and RR intervals (RRI) before segmenting the ECG signals
beat by beat [17].
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2.2. Classification networks structure

Recurrent Neural Networks (RNNs) are designed to work
with sequential time-series which are capable of learning de-
pendencies in sequential information. However, it has been
shown that learning long-term dependencies are very chal-
lenging [18]. LSTM networks, a special type of RNNs, are
capable of addressing the problem of unstable gradient and
can handle long-term dependencies [13]. As shown in Fig. 1,
there are three main parts in a LSTM block: (i) forget gate
(fn), (ii) input gate (in), and (iii) output gate (on). Forget
and output gates are mainly responsible to remove or add
information to the memory block in the following way:

fn = ϕ(bf + uT
f xn +wT

f hn−1), (1)

in = ϕ(bi + uT
i xn +wT

i hn−1), (2)

where xn is the input sequence at time step n and hn−1 is
the output sequence at time step n − 1. The uf , wf , ui, wi,
represent the weight matrices and bf and bi are bias terms.
These should be learned in the training phase of the LSTM.
In addition, since 0 ≤ ϕ(·) ≤ 1, this controls the contribution
of each unit in the memory block. Therefore, the memory cn
is updated as, cn = fncn−1 + inc̃n, where c̃n = tanh(bc +
uT
c xn + wT

c hn−1) ⊆ {−1,+1}. Finally, the output vector
hn is computed as, hn = on tanh(cn), where on = ϕ(bo +
wT

o xn +uT
o hn−1), uo and wo are the weight matrices of the

output gate, and bo is the output bias.
BiLSTM is a variant of the LSTM which can look at a

sequence of data in both directions. It consists of two hidden
layers which are fed forward to the output layer [19]. In a
recent study, it has been shown that choosing a suitable cost
function has a major impact during the training of a deep neu-
ral network [20]. Therefore, for training the LSTM and BiL-
STM networks, two different cost functions are used. These
are cross-entropy (CE) and sum of square errors (SSE), which
are formulated as follows:

JCE(X,Y) = − 1

M

M∑
i=1

[yi ln(a(xi)) (3)

+ (1− yi) ln(1− a(xi))],

JSSE(X,Y) = − 1

M

M∑
i=1

(yi − a(xi))
2, (4)

where X = {x1, . . . ,xM} and Y = {y1, . . . ,yM} are the
training inputs and targets, a is the activation of the output
layer, and M is the number of training inputs. There are two
LSTM or BiLSTM layers in each network with 150 hidden
units. The output of the last LSTM or BiLSTM layer is fol-
lowed by a fully connected layer. Finally, the output of the
fully connected layer with the size of 2 for the binary classi-
fication is fed into the classification layer which is a softmax
function and is performed as follows:

Pi = softmax(zi) =
ezi∑
i e

zi
, i = 1, 2, (5)
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Fig. 1: Schematic diagram of a LSTM memory block.

where zi is the output vector of the fully connected layer for
the two classes (P and non-P) and Pi is the predicted proba-
bility for the corresponding class.

2.3. Dempster-Shafer combination rule

The Dempster-Shafer theory (DST) is a powerful technique
for information fusion [15]. It is also capable of capturing the
degree of certainties from different information sources [21].
In DST, there are three main functions that are used. They are:
(i) mass probability function (m), (ii) belief function (Bel),
and (iii) plausibility function (Pl). Of these, m is the most
important in binary classification problems and should meet
the following conditions [15]:

m(X) : 2X → [0, 1] 3 m (∅) = 0, and
∑
A⊆X

m(A) = 1, (6)

where X is the universal set and ∅ is the empty set. In this
work, X = {P, non-P}.

One advantage of DST is its capability for combining in-
dependent evidences (mass probability functions). For exam-
ple, for two mass probability functions, m1 and m2, in order
to produce more informative evidence, which is denoted as
m1 ⊕m2 and is calculated as,

(m1 ⊕m2)(A) =
1

1− L
∑

B∩C=A 6=∅
B,C⊆X

m1(B)m2(C),(7)

where L =
∑

B∩C=∅m1(B)m2(C). In the proposed ensem-
ble method (Section 3), the outputs of the single classifiers
are actually normalized the mass functions between 0 and 1
which can be used by DST to compute a combined output.

3. ENSEMBLE P-WAVE DETECTION

The proposed algorithm is described in eight different steps
as follows:

1. Noise reduction: The ECG signals are filtered to remove
noise and baseline wanders.
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2. R peaks detection: As mentioned in Section 2.1, the Phys-
ioNet WFDB Toolbox is used to read R peaks annotations
from recorded ECG signals.

3. Segmentation: In this step, the RRIs are calculated and if
the the RRI is less than 0.4s as suggested in [22], the cor-
responding heart beat is not considered since its P-wave
and the T-wave from the previous beat may be overlapped.
Otherwise, a segment of length equal to 1/3rd of the
RRI, which starts from RRI − (2/3)RRI and ends at
RRI − 0.07RRI , is extracted for each ECG beat. Since
the lengths of these segments may be different, they have
been padded accordingly. For this purpose, each segment
is randomly padded from the beginning, end, or both sides
in a way that each segment has a length of 150 samples,
which corresponds to 1.67s. By doing this, the training
process will be more smooth for the networks and we
prevent the models to have bias over a certain area of the
extracted segments.

4. Creating a synthetic dataset: In this study, the number of
extracted segments with P in the dataset are much more
than non-P. Thus, the size of non-P class is not sufficient
for effectively training the classification algorithms. In ad-
dition, using this imbalanced dataset increases the chance
of biased classification, which in turn leads to a higher
error rate on the minority class [23]. Adaptive synthetic
oversampling technique (ADASYN) [23] is applied to
make the dataset balanced and improve the training of the
classifiers. This will also enable the classification algo-
rithms achieving their desirable performance. For brevity,
the detailed description of ADASYN is omitted here but
can be found in [23].

5. Cross validation: The whole dataset is divided into train-
ing and validation sets using 5-fold cross validation.

6. Train all classifiers: The four different classifiers are
trained separately using the 5-fold training sets.

7. Evaluate all the trained classifiers: The 5-fold validation
sets are provided to the trained networks to evaluate the
performance of the four different classifiers.

8. Combine the outputs of the classifiers: The outputs of all
the classifiers, which are posterior probabilities assigned
to the two classes (P & non-P), are combined using DST.

4. EXPERIMENTAL VALIDATION

In this study, we have used the QT Database (QTDB) on
PhysioNet [24] to evaluate the performance of the proposed
method. It consists of 105 ECG recordings of length 15 min-
utes each and sampled at 250 Hz. The imbalanced QTDB
dataset is composed of 111041 heart beats. Table 1 shows the
total number of beats for each of the two classes. It can be
seen that the number of beats per class is distributed evenly
after applying ADASYN method. In order to show the effect
of making the dataset balanced, the distribution of the imbal-
anced and balanced samples of one of the signals (records

#10) are plotted in Fig.2a and Fig.2b, respectively. This
clearly show how synthetic data are distributed with respect
to two arbitrary features, which are the maximum (Max) and
minimum (Min) values of the extracted segments.

Classes P non-P
Number of segments (imbalanced) 97117 13924
Number of segments (balanced) 97117 98043

Table 1: Number of segments for balanced and imbalanced
datasets.
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Fig. 2: Scatter plots of extracted segments for two arbitrary
features (Min and Max): (a) Imbalanced, (b) Balanced.

The raw extracted segments are used as inputs for training
the classifiers. The 5-fold cross validation accuracy on the
training and validation sets for the four single classifiers are
reported in Table 2. The LSTM-SSE outperforms other single
classifiers on both training and validation sets followed by
BiLSTM-SSE, LSTM-CE, and BiLSTM-CE.

Algorithms LSTM-CE LSTM-SSE BiLSTM-CE BiLSTM-SSE
Training (%) 89.97 97.58 87.28 93.37
Validation (%) 87.96 97.27 85.21 91.31

Table 2: 5-fold cross validation accuracies of classifiers.

In the final step, outputs of the single classifiers are com-
bined using the DST. The ensemble model improves the clas-
sification accuracy by more than 1% (98.49% vs 97.27%). In
addition, accuracy of single classifiers along with the ensem-
ble model at different cutoff points are shown in Fig.3a. The
ensemble model has the most robust performance and its ac-
curacies remain stable irrespective of the increase in the cutoff
points. Although, LSTM-SSE as the best single classifier is
relatively insusceptible to cutoff point changes compared to
other algorithms, there is however a slight decrease at around
cut off point 0.85. Fig.3b illustrates the comparison between
true positive rate (TPR) and false positive rate (FPR) using
receiver operating characteristics (ROC) curves. The zoomed
area represents the FPR equals to 0.1, which means that only
10% of all incorrect classification cases are actually false pos-
itive. In other words, only 10% of incorrect classifications are
the segments with absence of P-waves but classified as hav-
ing P-waves. Despite the overall high accuracy, in healthcare
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research, it is very important for a model to achieves a higher
TPR at a lower FPR as shown in Fig. 3b.
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Fig. 3: Comparison of the classification performance: (a) ac-
curacy at different cutoffs, (b) ROC curves.

The area under the curve (AUC) of the ROC curve is a
numerical measure, which evaluates the capability of a classi-
fier. The AUC, partial AUC (pAUC) at FPR equal to 0.1, and
accuracy of all the classifiers at cutoff point equal to 0.9 are
given in Table 3. It may be noted that the proposed ensem-
ble model has significantly enhanced the performance of the
classification task compared to the single classifiers.

Measure Accuracy (%) AUC pAUC
LSTM-CE 91.26 0.97 0.090
LSTM-SSE 97.21 0.98 0.086
BiLSTM-CE 82.34 0.91 0.075
BiLSTM-SSE 76.69 0.98 0.085
Ensemble (proposed) 98.48 0.99 0.098

Table 3: Comparison of the accuracy, AUC, and pAUC on
the validation set.

In order to further analyse the performance of the pro-
posed algorithm, other classification measures such as F1-
score, sensitivity (Se), and positive predictive value (PPV )
(defined below) are also calculated and reported in Table 4.

Se =
TP

TP + FN
, (8)

PPV =
TP

TP + FP
, (9)

F = (1 + β2)
PPV · Se

(β2 · PPV ) + Se
. (10)

where TP , FN , and FP are the number of true positive,
false negative, and false positive cases, respectively. F -score
is nothing but a weighted harmonic mean of Se and PPV ,
which takes both Se and PPV into account equally when
β = 1 and is called the F1-score. The value of F1-score
is in the range of 0 and +1, in which +1 represents the per-
fect classification while 0 represents the worst classification
performance.

The confusion matrices for the training and validation
phases of the proposed ensemble algorithm are shown in Fig.

Measure F1 score Se (%) PPV (%)
Training 0.9863 97.38 99.92
Validation 0.9856 97.22 99.94

Table 4: Classification measures of the proposed algorithm
on the training and validation sets.

4a and 4b, respectively. This shows the high rate of TPs and
TNs compared to FPs and FNs.
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Fig. 4: Confusion matrix. (a) Training. (b) Validation.

It should be mentioned that there are two main advantages
for the proposed ensemble deep learning model. First, unlike
most of the state-of-the-art algorithms, which use feature en-
gineering approaches, there is no need to define any features
for the P-waves detection in the proposed algorithm. Second,
using an ensemble of deep recurrent networks improves the
performance of the single classifiers for detection of the P-
waves. To the best of our knowledge, this is the first study
that investigates the P-waves detection in ECG signals using
an ensemble deep learning framework.

5. CONCLUSION

P-waves detection has been one of the most challenging tasks
in ECG waveform delineation. In this paper, an ensemble of
deep recurrent networks has been proposed to detect P-waves
in ECG recordings. First, four different classifiers (LSTM-
CE, LSTM-SSE, BiLSTM-CE, and BiLSTM-SSE) were
trained using 5-fold cross validation on PhysioNet QTDB
dataset. The laborious feature extraction step was omitted
and the raw ECG segments were directly used as inputs for
training the networks. The trained networks were then tested
on the validation sets. Finally, the DST combination rule was
used to combine the outputs of the classifiers, which were
the posterior probabilities assigned to the two classes (P and
non-P). The very impressive results obtained in our work
(even without the feature extraction step) provide us with the
opportunity to use this algorithm in-house by cardiologists
to diagnose cardiac arrhythmias. This algorithm is currently
being combined with our developed model to classify AFIB
[25].
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