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ABSTRACT

Reliable detection of stimulus-driven states and their separation from
internal state-driven spontaneous activity is an important step to-
wards inferring temporal dynamics of neurons and its relation to
the perception of external inputs. This is challenging, especially
when no prior assumptions about the underlying model and data
generating processes exist. To address this task, we applied effi-
cient recurrence quantification analysis (RQA) based on global re-
currence plots (RP) for accurate identification of the onset and offset
of visual neuronal responses caused by distinct types of visual stim-
uli. In particular, these critical times are estimated by taking the
first order difference of the line of synchronization extracted from
the associated global RP. Our approach was evaluated using a real
dataset of visually-driven neuronal responses and spontaneous ac-
tivity (recorded by in vivo 2-photon calcium imaging). It accurately
detects both the onset and offset time instants in the eventograms of
pyramidal neurons in a completely model agnostic framework.

Index Terms— Recurrence quantification analysis, global re-
currence plot, line of synchronization, neural eventograms, stimuli
change detection

1. INTRODUCTION

A fundamental question in neuroscience is to understand how the
sensory information is transformed and processed in the neocortex
and subcortical structures to achieve optimal sensory perception of
the environment. Neocortex, a six-layered, folded, sheet-like struc-
ture, consists of billions of interconnected neurons. Visual informa-
tion is transferred from the retina via the lateral geniculate nucleus
(LGN) to the primary visual cortex (area V1) and higher visual and
association cortical areas. Neurons in area V1 fire action potentials
when visual stimuli appear within their receptive fields, responding
vigorously to visual stimuli that are close to their preferred orienta-
tion and direction. During visual exploration the information about
the environment is encoded in real time via population firing pat-
ters appearing across multiple neurons. These patterns are highly
variable due to ongoing spontaneous firing in the network, yet the
perceptual outcomes are fairly faithful, even under degraded view-
ing conditions, such as low contrast. To build a good understanding
of the contribution that ongoing activity and stimulus feature-related
activity make to the perceptual outcome under varying viewing con-
ditions, it is important to classify the states of the individual cells
and their populations into stimulus-driven and ongoing spontaneous
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activity-driven. We take advantage of recent improvements in mas-
sive population imaging via in vivo 2-photon microscopy, powerful
non-linear data analysis techniques and the unique position of V1 in
the mouse as an area that is both required for perceptual outcomes
and has a large population of cells with simple, easy to track func-
tional properties (such as orientation and direction-selectivity).

A critical question is how well is one able to use statistical fea-
tures of the ongoing neuronal firing to identify “significant” firing
events, that, for example, mark the detection of relevant stimulus
in the environment or signify the occurrence of certain internal
states. Despite the significant progress, the automatic detection of
the stimulus-driven and spontaneous firing events, as well as detec-
tion of dynamic changes between distinct stimuli types, is an open
problem.

The underlying dynamical system that governs the behavior of
a neuron can be very complex, whilst its dynamical features are
only partially observed through the corresponding “eventograms”.
Furthermore, the relevant physiological phenomena are typically
a fusion of deterministic, chaotic, and random processes, yielding
changes at multiple time scales, thus imposing significant challenges
on the subsequent signal analysis.

Recurrence plots (RPs) [1] were proposed as an advanced graph-
ical technique of visual nonlinear data analysis, which reveals all the
times of recurrences, that is, when the phase space trajectory of the
dynamical system visits roughly the same area in the phase space.
Due to the highly subjective nature of a visual interpretation of RPs,
recurrence quantification analysis (RQA) [2] was introduced to per-
form nonlinear analysis of time series, which is also able to treat
nonstationary and short data series. RQA comprises of a set of ap-
propriate quantitative measures for the quantification of recurrence
structures, and the detection of critical transitions in the system’s
dynamics (e.g. deterministic, stochastic), which is precisely the ob-
jective of this work.

More specifically, our proposed methodology first computes a
global RP for a given eventogram associated with a pyramidal neu-
ron by appropriately embedding the one-dimensional eventogram
into a higher-dimensional phase space. Then, the onset and offset in-
stants between the distinct stimuli are detected by calculating the line
of synchronization (LOS) from the global RP. This approach is mo-
tivated by our expectation that different stimuli will be characterized
by different dynamics that can be distinguished by the RQA. Notice
that, for now, we only focus on the detection of changes between
stimuli, without taking into consideration their type. Overall, the
contribution of this paper is a computationally-tractable method for
an accurate detection of onset-offset instants of distinct stimuli from
the associated neural eventogram. The proposed method is generic,
model-free, and totally agnostic of the underlying dynamical system
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that generates the neural signals.

The rest of the paper is organized as follows: Section 2 refers to
the differences between our proposed methodology and prior stud-
ies. Section 3 analyzes the data acquisition process, whereas Sec-
tion 4 describes in detail our proposed approach for detecting stim-
uli changes from the global RP of eventograms. Finally, Section 5
evaluates the performance of the proposed method on a real OGB-
1 dataset, while Section 6 summarizes the main remarks and gives
directions for further extensions.

2. RELATION TO PRIOR WORK

The method presented here takes advantage of the recurrence fea-
tures in the form of a LOS, which is calculated directly from the
given eventogram by exploiting its global RP, for the accurate de-
tection of stimuli switching instants. The work in [3] calculates a
thresholded RP from a sequence of interspike intervals, which is then
coupled with a shuffling procedure that swaps neighboring intervals,
in order to perform only a qualitative study about the predictability
of spike trains. While the present study is related to recent works
in how spike train firing patterns from a neuron represent external
stimuli [4, 5, 6,7, 8, 9, 10], our methodology capitalizes on a model-
free, data agnostic perspective, which was not considered in these
earlier studies. Specifically, several of the previous works are based
on the assumption that spike trains are stationary processes (i.e., the
stochastic properties of the neurons do not change in time), while
their accuracy depends on the underlying mechanism that produces
the spiking activity. Furthermore, some of these studies employ
a Bayesian framework to model a spike train as a stochastic point
process and the associated biological signal as a stochastic process
based on its known properties. Despite its theoretical appeal, the
performance of the Bayesian approach degrades dramatically when
the assumed probability model is not a reasonable approximation to
the data.

3. DATA ACQUISITION PROCESS

This section describes our data collection and pre-processing pro-
cess. More specifically, we used male C57BL/6 mice expressing
Td-Tomato in 65% of cortical DIx5/6-positive interneurons. Total
data set consists of 21 FOVs from 18 animals (aged 8-35 days). A
craniotomy was placed over V1 and calcium-sensitive dye OGB-1
was bulk-injected to follow the population activity of V1 neurons
via two-photon imaging [11]. For imaging we used a Prairie Ultima-
IV two-photon microscope fed by a Chameleon Ti:sapphire Ultra-II
laser. We imaged cells 120 — 200 microns below the pia, in layer 2/3
of mouse V1, at 820 nm wavelength. Astrocytes (stained by red dye
SR-101) were excluded from the analysis. We selected an FOV con-
taining 100320 cells and acquired images using a 20x objective lens
(0.95 NA) at 3.2 - 11 Hz. Total length of the spontaneous activity
movies was 10-28 min.

Visual stimulation was performed in 4 adult animals. We used
drifting square-wave gratings with a temporal frequency of 2 Hz and
a spatial frequency of 0.05 cycles/?, constructed with MATLAB psy-
chophysics toolbox. Each visual presentation trial consisted of 2 sec
of visual stimulus presentation, followed by 3 sec of spatially uni-
form illumination. Gratings (12 directions, 15-30 trials per direc-
tion) were shown in random sequence on a flat LCD monitor cover-
ing 60° x 80° of the contralateral monocular visual field. See [12]
for the in-detail description of data collection.

Cellular calcium data were expressed as dF/F and deconvolved
using the method described in [13]. Per cell, the portion of the

recording containing no calcium events was used to estimate base-
line noise. To produce an eventogram, inferred spikes overcoming
the threshold of 2 standard deviations from baseline were set to 1,
while the rest of the recording was set to zero. In the following,
let r € RY denote an eventogram, that is, the response of a given
neuron, and t € RY be the associated vector of indices (i.e., time
instants) determining the time intervals when a specific stimulus oc-
curs. Notice that t is a piecewise linear curve. Fig. 1 shows an
eventogram selected at random from our OGB-1 dataset, along with
the generating sequence of stimuli.

Eventogram

0.5

100 200 300 400 500 600 700 800 900
Time indices
Sequence of 12 stimuli

100 200 300 400 500 600 700 800 900
Time indices

Fig. 1: Eventogram and corresponding sequence of stimuli.

4. DETECTION OF STIMULI CHANGES USING GLOBAL
RECURRENCE PLOTS

This section describes in detail our proposed approach for detect-
ing stimuli switching instants, by applying RQA on the global RP
of the corresponding eventogram. We emphasize that, although the
subsequent analysis is made for pyramidal neurons, however, the
methodology is generic and applicable on any type of neurons.

4.1. Global recurrence plot of eventograms

First, we give a brief overview of the global RP, which is a key com-
ponent of our proposed data analysis pipeline. More specifically,
an RP is a square matrix whose elements correspond to those times
at which a state of a dynamical system recurs, thus revealing all the
times when the phase space trajectory of the dynamical system visits
roughly the same area in the phase space. To this end, RPs enable the
investigation of an m-dimensional phase space trajectory through a
two-dimensional representation of its recurrences. Such recurrence
of a state occurring at time ¢, at a different time j is represented
within a two-dimensional square matrix with ones (recurrence) and
zeros (non-recurrence), where both axes are time axes.

Given an eventogram of length N, {r;}X_;, a phase space tra-
jectory can be reconstructed via time-delay embedding,
1=1,...,Ng, (1)

Xi = [T’h Tidrsy-- ) Ti+(mfl)r} )

where m is the embedding dimension, 7 is the delay, and N; =
N — (m — 1)7 is the number of states. Having constructed a phase
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space representation, an RP is defined as follows,

Rij=0(—-|xi-x%x5lp), 4 i=1,...,Ns, (2

where x;, x; € R™ are the states, ¢ is a threshold, || - ||, denotes a
general £, norm (Euclidean distance (p = 2) is commonly used), and
O(+) is the Heaviside step function, whose discrete form is defined
by
1, ifn>0
O(n)=4" ~_,neR. 3
() {0, itn<o0 " ©)

The resulting matrix R exhibits the main diagonal, R;; = 1, ¢ =
1,..., N, also known as the line of identity (LOI). Typically, sev-
eral linear (and/or curvilinear) structures appear in RPs, which give
hints about the time evolution of the high-dimensional phase space
trajectories. Besides, a major advantage of RPs is that they can also
be applied to rather short and even nonstationary data.

A special case of RP, useful in studying phase space trajecto-
ries, is the global RP [14] (also called unthresholded RP). Instead
of plotting the recurrences, the global version is simply obtained by
plotting the distances between states x; and x;, that is,

Di’j:HXi—Xij 5 Z,‘]Zl,,N (4)

The use of a global RP, D, in our proposed approach is motivated by
the fact that its thresholded counterpart, R, can reveal convergence
properties between the distinct time intervals within a given even-
togram, r, in the sense that the R; ; values will indicate dynamics
that occur to r within some critical distance. On the other hand, since
we are interested in detecting precisely the onset and offset times be-
tween neighboring stimuli in the associated sequence t, a global RP
can enhance the understanding of the phase space trajectories and
detect phase synchronous dynamics even when two distinct states of
r do not converge.

Estimation of embedding parameters. In our implementation,
the optimal time delay 7 is estimated as the first minimum of the
average mutual information (AMI) function [15]. Concerning the
embedding dimension m, a minimal sufficient value is estimated us-
ing the method of false nearest neighbours (FNN) [16]. In practice,
the minimal embedding dimension is defined as the dimension for
which the fraction of false neighboring points is zero, or at least
sufficiently small. Fig. 2 illustrates the optimal time delay and em-
bedding dimension for the eventogram shown in Fig. 1.
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Time delay (1)

T T T
FNN
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Embedding dimension (m)

Fig. 2: AMI and FNN criteria for setting the embedding parameters
of the eventogram in Fig. 1.
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4.2. LOS-based stimuli onset/offset detector

A key property of RPs, which is exploited in the detection of stimuli
switching instants, is that it reveals the local difference of the dy-
namical evolution of close trajectory segments in the phase space of
an eventogram. A time dilation or a compression of the time inter-
vals, where a stimuli appears in the eventogram, causes a distortion
of the diagonal lines in the corresponding RP. Then, the LOI will be
disrupted yielding the, so called, line of synchronization (LOS) [17].
Although the LOS is still continuous, it is not a straight diagonal line.
This enables the estimation of a non-parametric rescaling function
between the states of an eventogram.

Let 1 € R™s denote the LOS. The interpretation of 1 is the fol-
lowing: if [; = k, for some ¢ = 1,..., N, then, the state of the
eventogram at time ¢ approximates the state at time k. In the case
of eventograms, the LOS is a piecewise linear function, as shown in
Fig. 3, which illustrates the global RP and the LOS (staircase line)
for the eventogram shown in Fig. 1. Since, in general, N; # N, in
practice we apply a zero padding to r in order to obtain a LOS vector
1 whose length is equal to that of the index vector t.

Finally, having estimated the LOS, we calculate the first order
differences,

dii=liy1—1li,i=2,...,N. 5)

Doing so, the vector d; € RY will be of the form,
d = [NaN,...,0,d;,0,0,...,0,d;,0,...], 6)

with the zeros corresponding to the intervals where the LOS is con-
stant. Then, given that d; # 0 and d; # 0, we consider d; to be
the onset time and d; the offset time of a stimulus. This interpreta-
tion is justified by the fact that the constant segments of the LOS, or
equivalently the zero segments of d;, correspond to time periods in
the eventogram whose dynamics, as expressed by the corresponding
state vectors, are driven by the same stimulus.

Global RP and LOS (m=7, 7=2)

900

Time indices
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Time indices

Fig. 3: Global RP and LOS for the eventogram in Fig. 1.

5. EXPERIMENTAL EVALUATION

The performance of our proposed methodology is evaluated on a
set of real OGB-1 data, recorded as described in Section 3. In par-
ticular, a subset of the available dataset that includes all the even-
tograms with a firing rate exceeding 10 spikes/min is considered.



This heuristic rule allows us to account for those eventograms that
convey meaningful information for the associated sequence of stim-
uli. For each one of the 170 selected eventograms, the embedding
parameters (m, 7) are estimated first using the AMI and FNN cri-
teria, followed by the calculation of the corresponding global RP
and the estimation of its LOS. All the computations involving the
LOS have been performed using the CRP toolbox (http://tocsy.pik-
potsdam.de/CRPtoolbox/).

The original and estimated onset and offset times for the even-
togram (shown in Fig. 1) are depicted in Fig. 4. Clearly, the first or-
der differences calculated from the LOS, which is extracted from the
corresponding global RP, are capable of approximating accurately
the onset/offset times between consecutive stimuli of different types.
The achieved performance becomes even more significant given the
completely model-agnostic framework and the lack of any prior as-
sumptions about the data generating process or the probability dis-
tribution of the data.
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Fig. 4: Original and estimated onset/offset times for the eventogram
in Fig. 1.

The estimation accuracy for the whole subset of the 170 even-
tograms is presented in Fig. 5, which shows the histograms of the dif-
ferences between the original and estimated onset times (Fig. 5(a)),
as well as between the original and estimated offset times (Fig. 5(b)).
Positive differences mean that the original onset (respectively offset)
times precede the estimated ones, while negative values correspond
to the the cases when the estimated onset (respectively offset) times
follow the original ones. In general, the greatest mass of the on-
set time differences is concentrated around 1, whilst the offset time
differences vary mainly between O and 2 time instants, revealing in
both cases the efficiency of the RQA-based method in estimating
accurately the occurrence of each stimulus.

Note that the onset estimates are on average more accurate than
the offset estimates. This likely has to do with the biological prop-
erties of cortical neurons, namely the spike-frequency adaptation.
The adaptation properties (e.g. how fast the firing rates decline after
initial burst on presentation of optimal stimulus) are highly variable
between individual neurons, with most adapting neurons showing
adaptation within 800 ms after stimulus onset [18]. Since our stim-
uli stay on for 2 seconds, this presents an ample opportunity for firing
adaptation for many neurons, thus their event rates change insignif-
icantly when the stimulus is turned off, as most of the decline has
already occurred due to adaptation. The detection of offsets will
likely improve when short stimuli (e.g 50-100 ms) are used.

Histogram of onset differences

Frequency (%)
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Time difference
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Histogram of offset differences
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-5 -4 -3 -2 -1 0 1 2 3 4
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Fig. 5: Histograms of (a) onset time differences and (b) offset time
differences, between the original times and the RQA-based esti-
mates.

6. CONCLUSIONS AND FUTURE WORK

This work proposes a new methodology for the accurate estimation
of onset/offset times between distinct stimuli, by exploiting the LOS
extracted from the global RP of an eventogram, which is associated
with the specific sequence of stimuli. Experimental results on a real
OGB-1 dataset revealed the potentials of this approach, whose main
advantage is its totally model-free framework and lack of depen-
dence on prior knowledge about the underlying data distribution and
stimulus.

Currently, the estimation process considers single cell even-
tograms. We expect that the performance will improve by also ac-
counting for potential correlation between the eventograms, which
will be reflected in their cross RP. The analysis of the population
eventograms will take into account the interplay between individual
neurons in the biological (functional) network and will enable us
to identify and study the functionally-significant recurrent features
of the population activity and their contribution to the encoding of
external stimuli and internally-occurring states. We also plan to
incorporate the type of stimulus and type of neuron (e.g., pyramidal
vs. interneuron as well as its orientation preference) and assess their
impact. Finally, the use of the Euclidean norm as a distance metric
can be restrictive. To this end, we will study the performance of
general £, norms, where the value of p will better adapt to the given
data.
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