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ABSTRACT

Computer simulations have facilitated our understanding of
the dynamic behavior of the brain and the effect of the med-
ical treatment such as deep brain stimulation. For improving
the simulation model, it is essential to develop a method for
optimizing parameters of a neuron model from available ex-
perimental data. In this paper, we apply Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES) to the param-
eter optimization problem, and compare it with widely used
conventional approaches including genetic algorithm (GA)
and the Nelder-Mead method. A problem we have observed
with CMA-ES is that the performance highly depends on
the initial condition. To overcome the problem, we extend
CMA-ES by making an aggregation of evolution. We ana-
lyze a public dataset recorded from a rat neocortical neuron,
which shows that the proposed approach achieves higher
performance than the conventional methods.

Index Terms— CMA-ES, Genetic Algorithm, Brain sim-
ulation, parameter optimization

1. INTRODUCTION

Computer simulations have facilitated our understanding of
the dynamic behavior of the brain and the effect of the medi-
cal treatment such as deep brain stimulation [1]. For improv-
ing the simulation model, it is essential to develop a method
for optimizing parameters of a neuron model from available
experimental data [2, 3].

Various approaches for the parameter optimization prob-
lem have been proposed. First approach is based on the
gradient-based methods, such as gradient descent [4] and
the Levenberg-Marquardt method [5]. Though these meth-
ods rapidly converge to the minima, they might suffer from
local optimum if the fitness function is not concave. The
other approaches are based on derivative-free methods that
do not require the gradient of the fitness function, including
simulated annealing [6] and evolutionary algorithms [7, 8].
Genetic algorithm (GA) and evolution strategy are popular in
evolutionary algorithms [9]. Evolution strategy is similar to
GA but uses a real-valued vector as a gene.

Among evolution strategy algorithms, Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) [10] is known
as its great performance in various black-box optimization
tasks [11]. The application of CMA-ES to neuron model op-
timization has been suggested in [8], but its performance has
not been systematically evaluated. Here we investigate the
performance of CMA-ES by comparing it with conventional
methods. We found that the performance of CMA-ES highly
depends on the initial condition, i.e., CMA-ES performs
better than GA on average, however it sometimes performs
worse than GA. To overcome this drawback, we propose to
make an aggregation of CMA-ES for the optimization.

The remainder of this paper is organized as follows. In
Section 2, the evolutionary algorithms are briefly reviewed,
and the proposed method is described. In Section 3, a spik-
ing neuron model that is used in our optimization task is ex-
plained. Experimental setup is described in Section 4, and the
results are shown in Section 5. Finally, conclusions and future
works are provided in Section 6.

2. EVOLUTIONARY ALGORITHMS

2.1. Genetic algorithm

GA is a search heuristic motivated by the natural evolution
process. This algorithm is based on 1) the selection of genes
according to their scores, pruning inferior gene vectors for the
next iteration (generation); 2) mating pairs of gene vectors to
form child gene vectors that mix the properties of the parents,
and 3) mutation of a part of a gene vector to produce new gene
vectors. Algorithm 1 shows the process of GA.

2.2. Covariance matrix adaptation evolution strategy

Covariance matrix adaptation evolution strategy (CMA-ES)
is an evolution strategy, where a closely related method is the
natural evolution strategy [12]. Although both of them have
several variations, it has been shown that their core part is
mathematically equivalent [13]. Here, we follow the deriva-
tion of natural ES as the explanation of CMA-ES [14].

CMA-ES uses a multivariate Gaussian distributionN (x|θ)
having a parameter set θ = {µ,Σ} to represent a gene distri-
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Algorithm 1 Genetic Algorithm

1: for k =1 to population do
2: Initialize xk
3: end for
4: while not max generation do
5: for k=1 to population do
6: Evaluate individual xk to obtain fitness f(xk)
7: end for
8: Generate next-generation individuals from the cur-

rent generation and their fitness through selection,
crossover, and mutation operations

9: end while
10: return Best individual x and fitness f(x)

bution, where x is the real-valued vector representing a gene,
µ is aD-dimensional mean vector, Σ is aD×D-dimensional
covariance matrix, and D is the gene size. Instead of directly
maximizing the fitness f(x), CMA-ES maximizes an ex-
pected value of the fitness E[f(x)|θ] under the Gaussian
distribution as shown in Equations (1) and (2). Higher expec-
tation means the Gaussian distribution generates good genes
with high probability.

E[f(x)|θ] =

∫
f (x)N (x|θ)dx, (1)

θ̂ = argmax
θ

E[f(x)|θ]. (2)

To maximize the expectation, the gradient ascent method
is used to iteratively update the current parameter set θn start-
ing from an initial parameter set θ0, as shown in Equation (3).

θ̂n = θ̂n−1 + ε∇θE [f(x)|θ] |θ=θ̂n−1
, (3)

where n is an iteration index and ε (> 0) is a step size. The
iteration corresponds to a generation. By using the relation
∇ log f = ∇f

f and approximating the integration by sam-
pling, the gradient is expressed by Equation (6).

∇θE[f(x)|θ] |θ=θ̂n−1
(4)

=

∫
(f (x)∇θ logN (x|θn−1))N (x|θn−1)dx (5)

≈ 1

K

K∑
k

yk∇θ logN (xk|θn−1), (6)

xk ∼ N (x|θn−1),

where xk is a gene sampled from the previously estimated
distribution N (x|θ̂n−1), and yk is the evaluated fitness yk =
f(xk). The set of K samples at an iteration step corresponds
to a set of individuals at a generation in an evolution. If we
interpret the fitness as a reward and the gene as an action,
CMA-ES may be seen as a type of the policy gradient based
reinforcement learning using a Gaussian distribution as the
policy function [15, 16].

Algorithm 2 CMA-ES

1: Initialize µ0 and Σ0

2: while not max generation do
3: for k =1 to population do
4: Sample xk from N(x|µn−1,Σn−1)
5: Evaluate f(xk)
6: end for
7: Rank f(xk)
8: Update µn, Σn

9: end while
10: return Best individual x and score f(x)

Although simple gradient ascent may be directly per-
formed using the obtained gradient, CMA-ES uses the natural
gradient ∇̃θE[f(x)|θ] = F−1∇θE[f(x)|θ] to improve the
convergence speed, where F is a Fisher information matrix
defined by Equation (7).

F (θ) =

∫
N (x|θ)∇θ logN (x|θ)∇θ logN (x|θ)T dx.

(7)
The Fisher information matrix can be analytically evalu-

ated for Gaussian distribution. The final update formula for
µ̂n and Σ̂n are obtained as shown in Equation (8).

µ̂n = µ̂n−1 + εµ
∑K

k=1 w(yk)(xk − µ̂n−1),

Σ̂n = Σ̂n−1 + εΣ
∑K

k=1 w(yk)

·
(
(xk − µ̂n−1)(xk − µ̂n−1)ᵀ − Σ̂n−1

)
,

(8)

where ᵀ is the matrix transpose. Note that, as in [10], yk in
Eq. (6) is approximated in Eq. (8) as a weight function w(yk),
which is defined as:

w(yk) =
max{0, log(K/2 + 1)− log(R(yk))}∑K

k′=1 max{0, log(K/2 + 1)− log(R(yk′))}
− 1

K
,

(9)
where R(yk) is a ranking function that returns the descending
order of yk among y1:K (i.e., R(yk) = 1 for the highest yk,
R(yk) = K for the smallest yk, and so forth). This equa-
tion only considers the order of y, which makes the updates
less sensitive to the evaluation measurements. Algorithm 2
summarizes the CMA-ES optimization procedure.

2.3. Aggregated CMA-ES

While CMA-ES has proven to be efficient, the results tend to
largely vary for different trials, that is, the performance highly
depends on the initialization. This is maybe because the land-
scape of the objective function in the gene space is fitted by a
Gaussian distribution, which only describes a symmetric dis-
tribution with a single peak. To improve CMA-ES for achiev-
ing near global optimum result, we propose an approach that
runs CMA-ES for multiple trials with different initialization
and finds the best individual among all the trials. We refer to
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Table 1: The range of initial condition for the model param-
eters. s1 and s2 are defined by τ1 = 20/(1 + e−s1) and
τ2 = 200/(1 + e−s2), respectively.

Parameter α1 α2 ω s1 s2
Min 50 3 -62 -1 -1
Max 80 7 -32 1 1

this strategy as aggregated CMA-ES, and the number of trials
as aggregation size. The original CMA-ES is a special case of
the aggregated CMA-ES whose aggregation size is 1. In this
way, we have multiple Gaussian distributions in an aggregated
evolution process, and can represent complex divergence as a
whole.

3. NEURON MODEL

3.1. Model organization

We considered the parameter optimization problem of Multi-
timescale Adaptive Threshold (MAT) model [17]. The neuron
model generates spikes when the potential u exceed the spike
threshold θ as shown in Equation (10).

If u (t) ≥ θ (t)→ Emit a spike at time t,

Cm
du

dt
= −gL (u− EL) + Iex (t) ,

θ (t) = ω +
∑

k:kt<t

α1e
− t−tkτ1 + α2e

− t−tkτ2 , (10)

where Cm = 160 (pF) is the membrane capacitance, gL = 16
(nS) is the leak conductance, EL = −71.5 (mV) is the leak
potential, and Iex (t) (pA) is the injected current. The thresh-
old parameters {ω, α1, α2, τ1, τ2} need a black-box optimiza-
tion and we apply GA and CMA-ES.

3.2. Performance evaluation

We evaluate the model performance by the coincidence factor
Γ [17], which is defined by Equation (11).

Γ =
Nc − 2fmNd∆

Nd +Nm
× 2

1− 2fm∆
, (11)

where Nc is the number of coincident spikes with precision
∆ = 4 (ms), Nd (Nm) is the number of spikes of the real
(model) neuron, and fm is the spike frequency of the model
neuron. The maximum value of Γ = 1 is achieved only if all
the spikes coincide with precision ∆.

4. EXPERIMENTAL SETUP

We analyzed a public dataset from the International Compe-
tition on Quantitative Single-Neuron Modeling 2009 [2, 18]

Table 2: Model performance optimized by grid search and
Nelder-Mead method.

Strategy Grid Search Nelder-Mead
Coincidence factor (Γ) 0.580 0.618

(Challenge A). The data consists of the stimulus and the volt-
age recorded from a rat neocortex neuron.

Five threshold parameters {ω, α1, α2, τ1, τ2} are opti-
mized by applying GA and CMA-ES to the dataset between
17.5 sec and 39 sec. For the initialization, GA needs a set of
initial genes of the population size whereas CMA-ES needs
a single individual as the mean. We generated these initial
genes by random sampling from a multidimensional uniform
distribution over an interval shown in Table 1. We used Gaus-
sian mutation and two-point cross-over for GA. We initialized
the covariance matrix for CMA-ES by 0.4I , where I is an
identity matrix. The fitness is evaluated by the model perfor-
mance Γ. We used GA library, DEAP [19]1 and CMA-ES
library in Hansen’s webpape 2 for implementation.

Table 2 shows the model performance Γ obtained by the
grid search and the Nelder-Mead method [20]. Γ obtained
by the grid search and the Nelder-Mead method were 0.580
and 0.618, respectively. The Nelder-Mead method is one of
the state-of-art methods for neuron model optimization [2,
21]. We first examine the following range by using a grid
search: α1 ∈ [5, 10, · · · , 75], α2 ∈ [0.5, 1.5, · · · , 9.5], and
ω ∈ [−65,−62, · · · ,−38]. Then, the Nelder-Mead method
is applied from each grid point.

5. RESULTS

We compared the average of the model performance Γ
achieved by GA with CMA-ES (Fig. 1). Because the per-
formance depends on the initialization, we calculated the
average of 50 trials. Fig. 1A shows how the performance of
GA improves during the evolution. Γ increases with the pop-
ulation size and does not converge when the population size
is 50. At a population size of 50 (100), Γ was 0.595 (0.599).
While the performance increases quickly at the early stage
of the evolution (e.g., less than 30 generations), it does not
converge at the later stage. For example, Γ is 0.598 (0.599)
at 100-th (120-th) generation for a population size of 100.
Thus, GA requires a high computational cost to achieve good
performance. Fig. 1B shows how the performance of CMA-
ES improves during the evolution. Although the performance
of CMA-ES increases more slowly than that of GA at the
early stage, it converges faster than GA. Before the 100th
generation, the elements of the covariance matrix become
very small and CMA-ES converges in most of the cases. The
improvement resulting from changing the population size

1https://github.com/deap/deap
2https://www.lri.fr/˜hansen/cmaes_inmatlab.html

1266



 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

0 20 40 60 80 100

G
am

m
a

Generation

A

Population: 20
Population: 30
Population: 50

Population: 100

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

0 20 40 60 80 100

G
am

m
a

Generation

Population: 10
Population: 20
Population: 30
Population: 50

B

GA

CMA-ES

Fig. 1: Comparison of the model performance Γ obtained
by GA (A) and CMA-ES (B). The average performance was
compared for different population sizes.

from 30 to 50 is small, that is, Γ was 0.598 (0.601) for a
population size of 30 (50). A population size of 50 seems to
be sufficient for CMA-ES. The results suggest that CMA-ES
is more computationally efficient than GA.

We examined the effect of the initial condition on the per-
formance (Fig. 2 at aggregation size 1). The performance of
CMA-ES is sensitive to the initial condition compared to GA.
While the average and the best performance by CMA-ES are
better than those by GA, GA sometimes performs better than
CMA-ES due to this sensitivity.

To improve the robustness against the initialization, we
propose the aggregated CMA-ES (Section 2.3) and examine
the effect of the aggregation sizes on the performance (Fig-
ure 2). We divided the results of 50 trials, e.g., we have 25
dots for aggregation size 2, and 10 dots for 5. The aggregated
CMA-ES provides higher Γ than the aggregated version of
GA when we choose the aggregation size larger than 10. The
best Γ was 0.612 by GA and 0.630 by CMA-ES when the ag-
gregation size was 50. Finally, as a supplemental experiment,
we run GA for 10,000 generations with aggregation size 1
and population size 30. The obtained Γ was 0.617. There
is a small improvement compared to 0.612 of the aggregated
GA result with 150 generations, but it was smaller than 0.630
obtained by aggregated CMA-ES with 100 generations.
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Fig. 2: Distribution of Γ when aggregated GA and CMA-ES
were used. The population size and the number of generations
were 100 and 150 for GA, and 50 and 100 for CMA-ES.

Table 3: The performance and the parameters of the neuron
model optimized by aggregated GA (A-GA) and aggregated
CMA-ES (A-CMA-ES).

A-GA A-CMA-ES
Coincidence factor (Γ) 0.612 0.630

α1 70.2 63.4
α2 7.18 9.10
ω -47.9 -49.4
τ1 9.62 9.71
τ2 90.3 85.6

Table 3 shows the model parameter values optimized by
GA and CMA-ES. Aggregation size, population size, and
number of generations were 50, 100, and 150 for GA, and
50, 50, and 100 for CMA-ES, respectively. Compared to the
Nelder-Mead method [2, 17], GA yielded no improvement
but CMA-ES achieved 2.0% relative improvement.

6. CONCLUSION

We have applied CMA-ES to a neuron model optimization
problem for a public dataset recorded from rat neocortex,
and have demonstrated that its averaged performance outper-
forms conventional optimization approaches based on GA
and Nelder-Mead methods. However, we have found that the
fitness obtained by CMA-ES largely depends on the initial
condition, and sometimes it gives worse results than the con-
ventional methods. To address the problem, we tried a simple
strategy that makes the aggregation of CMA-ES for the op-
timization, which we referred to as aggregated CMA-ES.
Experimental results show that aggregated CMA-ES is robust
against the initial condition, and stably achieves better per-
formance than conventional methods. Future work is to apply
the proposed method to more complex neuron models and to
extend it for a better performance with smaller computational
cost.
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