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ABSTRACT

We analyze the performance of a network of very simple
nano-devices that cooperate to detect and/or amplify the
presence of target molecules. The nano-devices only have the
capability to detect a single type of molecules and in response
release molecules. Furthermore, each device has a binary op-
eration, and releases all of its stored molecules in response
to a single detection. Nevertheless, the network establishes a
complex behavior through cooperation between the devices
(without additional device complexity). Analysis reveals that
depending on the network parameters, the network can imple-
ment a mass amplifier (that releases an amount of molecules
that is proportional to the input mass) or a binary detector
(that generates a macro level response to the presence of a
small mass of target molecules). We characterize the network
behavior and derive exact expressions for the variance of the
response and the miss-detection probability.

Index Terms— Bionanotechnology, Network analysis,
Nanoscale devices, nanorobots, Poisson point process.

1. INTRODUCTION

Nano-devices are just around the corner. These nanometer
scale devices (sometimes also termed nano-robots) are going
to open new frontiers in the sensing and manipulation at the
molecular level.

Nano-devices with similar capabilities to those considered
in this work have been demonstrated using various technolo-
gies. These include devices that are based on DNA molecules
(e.g., [1]), hydrogels (e.g., [2]), mesoporous silica (e.g., [3])
and more. However, due to size requirements and the cur-
rent state of technology, all nano-devices (at least in the first
few generations) will have very limited capabilities. Luckily,
nano-devices come in very large numbers. Thus, even with
limited capabilities per device, the network capabilities can
be almost limitless, if the nano-devices are able to cooperate.

The need and potential of cooperating nano-devices is
easily imagined, (e.g., [4–6]). Yet the details of such cooper-

ation are far from obvious. So far, analyses of such coopera-
tion were mostly focused on swarm ideas, and assumed some
‘significant’ communication between the nodes (e.g., [7, 8]).
Such ‘significant’ communication that can deliver data values
from one device to another requires protocols, addressing,
modulations synchronization and so on.

This type of communication is termed nano - communi-
cations and has been studied extensively (e.g., [9–11]). How-
ever, it is not feasible at the current technology in devices at
the scale of nanometers (or even micrometers). Such devices
do not have enough (if any) memory and processing capabil-
ities.

Thus, so far, no theoretical performance analysis had con-
sidered the behavior of a complete network of cooperating
nano-devices with feasible complexity.

In this work we study the cooperation of very simple
nano-devices, where each device is only capable of sens-
ing a specific type of molecule and in response to release
molecules (of the same type or different than the sensed
molecules). Such devices are feasible using various tech-
nologies as mentioned above [1–3]. By choosing one type
of molecules to be communication molecules (CM), these
molecule are used to achieve cooperation between the nano-
devices in the network. This type of communication, where
devices communicate indirectly by modifying the environ-
ment, was termed stigmergic [12] communications,

While such a network can be used for multitude of appli-
cations, in this work we focus on the network ability to oper-
ate as a detector. That is, we study the ability of the network
to detect target molecules and amplify the response enough
such that an external detector (at the macro level) will be able
to sense it. We note that this analysis can be easily adapted
to networks in which the released molecules have a desired
effect on the environment.

2. SYSTEM MODEL

We consider a (set of) very simple nano-devices, which only
has a capability to detect a specific types of molecules and
make a single action. The only action that is considered
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is releasing all the molecules stored at the device. We fur-
ther assume that each device is binary, i.e., it either detects
molecules or not, and its reaction for a detection is always to
release all stored molecules.

The network is composed of two types of devices. De-
vices of type T have sensors that can detect the target
molecules (TM) and in response release communication
molecules (CM). Devices of type C detect CM and release
CM.

The TM are considered the input of the system, i.e., the
network is designed to detect their presence. The CM is used
to coordinate the cooperation between the devices and are also
considered as the system output. Thus, the network is char-
acterized by the release of CM in response to the presence of
TM. Obviously, we assume also that at the macro level, there
are sensors that are capable to detect the CM density and use
such measurements to characterize the presence of TM.

Denote the density of TM and CM at any given time, t,
and location, x, by mu(x, t), where u = ′t′ for TM and u =
′c′ for CM. This density follows the diffusion equation [13]:

∂mu(x, t)
∂t

= −
1
τ̄u

mu(x, t) + Du∇
2mu(x, t) (1)

where Du is the diffusion coefficient and τ̄u is the average life
time of molecules of type u1.

On the other hand, we treat the nano-devices as distinct
devices, and address the operation of each device separately.
As the devices mobility is described by a random walk, in
steady state, they are uniformly distributed over the system
volume. To avoid the characterization of a specific system
volume, we assume that the volume is very large, and model
it as infinite. Thus, the device locations are modeled by a
homogenous Poisson point process (HPPP).

HPPP processes were widely used both in communica-
tions [14–19] and in biology [20–22]. In HPPP, denoting the
device density by λ devices per μm3, the number of devices
in any volume of size V is a Poisson variable with parameter
λV . Conveniently, as the devices has no memory, the mobil-
ity of the nano-devices has no effect on the network, and we
can treat the nano-devices as fixed in space.

Denote the initial TM density at time t = 0 as m0(x). The
density of TM at any time and place is given by:

mt(x, t) =
∫

R3

m0(y)e−
t

τ̄t

(4πtDt)3/2
exp

{

−
‖(x − y)‖2

4tDt

}

dy. (2)

This density affects the detection probability of type T de-
vices.

We focus on simple sensors, in which the detection proba-
bility is linear with the molecule density. Thus, assuming that
the device is still charged, the detection probability at short
time interval [t, t + dt) at a location x is μt ∙ mt(x, t)dt.

1We assume that the molecules degrade and disappear according to an
exponential distribution. An analysis without degradation (τ̄u → ∞) is
nearly identical, but then we have to consider a finite analysis time.

The sensor also has a false alarm probability, that can
cause a false detection even in the absence of TM. However,
due to lack of space, the false alarm is not addressed herein,
and is left for the journal version of this work.

Denote the location of the i-th device by xi = [xi, yi, zi],
its type by ei ∈ {c, t} and its detection time by τi ∈ (0,∞].
For the sensors described above, if ei = {t}, we can write:

Pr(τi ≤ t) =
∫ t

0

(1 − Pr(τi < τ ))μtmt(x, τ )dτ. (3)

Once a sensor is activated, the device releases its storage of a
mass M of CM. Thus, the density of CM is given by:

mc(x, t)=
∑

i

Me−
t−τi

τ̄c U(t − τi)
(4π(t − τi)Dc)3/2

exp

{

−
‖(x − xi)‖

2

4(t − τi)Dc

}

(4)

where U(t) is the unit step function.
The description so far focused on the sensing in T type

devices. The activation of type C devices is identical except
for possible difference in the device parameters. Thus, this
detection described by equation (3), with the replacement of
μt and mt by μc and mc, respectively.

3. NETWORK ANALYSIS

In this work we focus on the analysis of the total response of
the network in the low detection probability regime. The total
response and the low detection probability regime are defined
in the next two subsections, followed by our main results.

3.1. The low detection probability regime

The low detection probability regime describes the system
conditions for which most of the devices remain inactive, i.e.,

Pr(τi ≤ t) � 1. (5)

This regime is typical in networks where the number of nano-
devices is large, and only small part of them will participate in
the reaction. Noting that the detection probability, (3), is de-
scribed by an integral, guarantees that the low detection prob-
ability regime will describe any network for a short enough
time.

Inequality (5), which will be termed in herein the low
probability assumption, immediately simplifies the detection
probability, (3), to:

Pr(τi ≤ t) ≈
∫ t

0

(μei
mei

(x, τ ) + qei
) dτ. (6)

This equation is much easier to evaluate, and it allows a sim-
pler characterization of the network. It also allows to char-
acterize the limits of the low detection probability regime, as
(5) is satisfied whenever (6) is much smaller than 1. We also
note that the low probability assumption implies that the den-
sity of ready devices (devices that can release CM) can be
considered constant throughout the analysis.
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3.2. Total response analysis

The total response is defined as the integral over time and
space of the density of CM in the system. That is:

R =
∫ ∞

0

∫

R3

m(x, t)dxdt. (7)

For simplicity, the total response is evaluated over infinite
time. Thus, this type of analysis will be valid only if the
network remain in the low detection probability regime for
infinite time. This rules out some interesting cases. Yet, we
will show that we can get much insight on the network from
the total response analysis.

Substituting (4) in (7), we get:

R = NMτ̄c (8)

where N =
∑

i 1τi<∞ is the number of activated devices and
1x=y is the indicator function. Note that τi = ∞ indicates
that i-th device was not activated at all. Thus, evaluating the
total response requires the evaluation of the number of acti-
vated devices.

3.3. Main results

The total response of the network can be characterized
through the average device response

G = λμcMτ̄c (9)

and average input response

η = λμtAτ̄t (10)

where A is the initial (or input) mass of TM in the system,
given by:

A =
∫

R3

m0(x)dx. (11)

The network analysis indicates that the network has two
distinct behaviors. A mass amplifier behavior when G < 1
and a detector when G > 1. These two behaviors are charac-
terized by Theorems 1 and 2.

Theorem 1 (Mass amplifier). If G < 1 then the total response
of the network is bounded and satisfies:

E[R] =
G

1 − G

μt

μc
τ̄tA,

Std(R)
E[R]

=

√
1

(1 − G)η
. (12)

Thus, the average total response grows linearly with the
input mass, A, and we can say that the network amplifies the
input mass. However, if the input mass is not large, the vari-
ance of the response will be significant, and the accuracy of
the mass amplification will be poor. On the other hand, for

large enough inputs, Theorem 1 shows that the standard de-
viation of the response will be much smaller than its mean,
and we will get an accurate amplification. Thus, we can say
that the amplifier is accurate if η � 1/(1 − G). To ex-
press this fact, we say that the amplification sensitivity level
is (λμtτ̄t)−1 ∙(1−G)−1 and that the network serves as a good
amplifier if the input mass, A, is significantly larger than the
sensitivity. This amplification behavior is demonstrated in the
numerical section below.

If G > 1 then the total response according to the approx-
imation in (6) can be infinite. Thus, the network will not stay
in the low detection probability regime for long, and our anal-
ysis may seem irrelevant. Nevertheless, as the low probaility
assumption will hold until significant part of the devices will
be activated, we can conclude that in such case the network
will have a significant response to the input mass. Such a
significant response can be detected at the macro level, and
hence, the network acts as an intermediate detector, that de-
tects the input mass and creates a significant enough response
that can be observed at the macro level. Thus, we conclude
that we can use the low probability analysis to understand
wether the network response will be significant enough to be
observed, or will fade off (when the low probability analysis
shows a bounded response). The detection behavior is de-
scribed by:

Theorem 2 (Detection). If G > 1 then the total response of
the network under the low probability assumption (e.g., us-
ing (6)), can be bounded or unbounded. The probability of
unbounded response is given by:

Pdet = 1 − p
η/G
bm (13)

where pbm is the solution of

pbm = e−G+Gpbm (14)

that dose not equal 1.

Thus, Theorem 2 characterizes the miss detection prob-
ability of the network detection. This probability is also
demonstrated in the next section.

Proof of Theorems 1 and 2. The proof of the theorems is too
long to fit in the space constraints of this version. Hence, we
give herein only the main idea: To characterize the total re-
sponse, we group the activated devices according to concep-
tual activation stages. The devices that are activated directly
by the input signal belong to stage 1, and a device belongs
to stage k if it is activated by a device that belongs to stage
k − 1. Now, the total response can be characterized by the
process that counts the number of devices in each stage. The
proof is based on showing that the number of devices in stage
k has a Poisson distribution with a parameter that equals G
times the number of devices in stage k − 1. Theorems 1 and
2 then follow from the analysis of this random process.
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Fig. 1. Total response as a function of the input mass. The
figure demonstrate the linear network gain and its standard
deviation for various values of the device response, G.

4. NUMERICAL RESULTS

In this section we demonstrate the different network behav-
iors, and the accuracy of our analysis. To this end, we used
Monte Carlo simulations, in a setup with an average number
30 million nano-devices, distributed over a 3-dimensional ball
with a radius of 10mm (λ = 7.16∙10−6 devices per μm3). For
simplicity, we chose the same parameters for the TM and CM,
with Dt = Dc = 1000μm2/s (which is a typical diffusion
coefficient for small molecules in water) and τt = τc = 20
seconds. The values of Mμc were chosen to generate various
values of the average device response, G (and μt = μc). The
input mass was always inserted at time zero at the center of
the system. The simulation emulated the devices activation
with a time step of 2 seconds.

Fig. 1 depicts the normalized total response, defined as
R/Mτc, as a function of the input response η = λμtτ̄tA in
the amplifying regime (G < 1). The figure demonstrates the
linearity of the average total response with the input mass,
and thus justifies the name ‘amplifier’. The figure also de-
picts the standard deviation of the normalized total response,
and shows that for large input mass, the standard deviation is
much smaller than the mean.

The figure also shows the accuracy of the analytical re-
sults of Theorem 1, which are shown as lines in the figure. All
measured responses (depicted by markers) lie almost exactly
on the theoretical lines. Extending the measurement results
using the derived expressions, we can say, for example, that
an input mass that will lead to η = 100/(1 − G) will lead to
a response with a standard deviation of only 10% of its mean.

Fig. 2 demonstrates the network behavior in the detection
regime. The figure depicts the miss-detection probability as a
function of the input response. For this simulation we decided
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Fig. 2. Miss detection probability as a function of the input
mass, for various values of device response, G.

that an activation of 200 devices is considered as detectable
by the macro detector (mostly because the probability that the
response will decay after reaching 200 devices is negligible).

The figure shows that the Miss-detection probability in-
deed decreases as G and η increase, and the accuracy of the
analysis of Theorem 2 is very good2.

5. CONCLUSIONS

In this work we studied the behavior of a network that con-
sists of two simple device types: Devices of type T that can
detect target molecules (TM) and in response release commu-
nication molecules (CM), and devices of type C that detect
CM and release CM.

We showed that the network can exhibit different behav-
iors as a function of its parameters, and mainly the average
device response, G. If G < 1, the network implements a mass
amplifier, in which the amount of CM released is proportional
to amount of input TM. If G > 1, the network implements a
binary detector that releases a very large mass of a CM once
the TM is detected in the system.

This complex behavior starts to reveal the potential of
nano-device cooperation, and the importance of complete net-
work analysis. Further research is required to further char-
acterize the behavior of this interesting network, for exam-
ple through characterization of the spatial distribution and
the timing of the device activations. Even further research is
needed to start the characterization of more complex networks
that can result from small increase in the device capabilities.

2For low miss detection probabilities, the input mass deviate by up to 20%
from the values predicted by theory. Further research is required to determine
whether this is an analytical issue (e.g., the effect of the low probability as-
sumption) or a simulation issue (e.g., too high time step).
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