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ABSTRACT

Deep learning, a powerful methodology for data-driven mod-
elling, has been shown to be useful in tackling several prob-
lems in the biomedical domain. However, deep neural archi-
tectures lack interpretability of how predictions from them are
made on any test input. While several approaches to ”open-
ing the black box” are being developed, their application to
biological and medical data is very much as its infancy. Here,
we consider the specific problem of protein secondary struc-
ture prediction using the techniques of saliency maps to ex-
plain decisions of a deep neural network. The analysis leads
to two important observations: (a) one-hot-encoded amino-
acids are irrelevant in the presence of PSSM values as ex-
tra features; and (b) in predicting α-helices at any position,
amino-acids to the right are far more important than those to
the left. The latter observation may have a biological basis
relating to the synthesis of proteins by ribosome movement
from left to right, sequentially adding amino-acids.

Index Terms— Interpretability, Saliency Maps, Protein
Secondary Structure Prediction, Convolutional Neural Net-
works.

1. INTRODUCTION

Secondary structure prediction is a long-time studied prob-
lem in bioinformatics. The 3D structure of a protein deter-
mines the function it is going to adopt in the cell. However,
the protein structure cannot be easily measured without be-
ing too costly, so computational tools can be an alternative by
predictions based on amino-acid sequences —easy to obtain
through DNA sequencing— and proteins with known struc-
ture. Since direct prediction of the 3D structure is still a hard
problem, tackling the prediction of the secondary structure
can be seen as an easier middle step. Protein secondary struc-
ture prediction is a sequence structural tagging problem: each
element (amino-acid) of the protein sequence has to be as-
signed a class (secondary structure). There are 21 different
types of amino-acids and eight possible goal classes, com-
posed of 3 types of helices (H, G, I), two types of β-sheets
(B, E), and three types of coils (T, S, L) [1]. Along with
the amino-acid themselves, other relevant features can also be

added as inputs, such as Position Specific Substitution Matri-
ces (PSSMs) [2]. PSSMs encode the evolutionary probabil-
ity of finding substitutions in each element of the amino-acid
chain, and brought a significant performance improvement in
the classficiation task. A common input sequence would have
length l (variable from protein to protein) and width 42: 21
from one-hot encoded amino-acids and 21 from the PSSM
values, normalized to a range between zero and one [3]. A
new generation of deep learning approaches started recently
with [4], who implemented a Generative Stochastic Network
fed by a 1D Convolutional Neural Network (CNN) architec-
ture. Later works already included 1D CNNs with five or
more layers [5, 6, 7] or recurrent neural networks [8, 9], which
are deep in the sense of signals being processed for many
time-steps.

Saliency maps (also known as attribution techniques [10])
are a visualisation technique that aims to reveal which parts
of an input sample are mainly responsible for the output de-
cision made by a classification system. They can be regarded
as a type of sensitivity analysis, applied in many other fields
of research. A saliency map has the same dimensions as the
input and contains their importance values, i.e. their contri-
bution to the output. Depending on their calculation method,
saliency maps can be broadly grouped into perturbation-
based approaches (making modifications on the input and
assessing changes in the output) or backpropagation-based
approaches (obtaining the importance information from the
gradient of the output respect to the input) [11]. Although
the first group is intuitive and useful for small input spaces,
it becomes quickly intractable when the input size grows, as
all possible combinations of inputs should be examined for a
complete analysis. The second group allows the computation
of importance scores in a single gradient computation, with
a reduced computational complexity that makes it preferable
for bigger input spaces.

Back-propagation approaches can be thought as a linear
approximation of the classification function around a sample
input point x0 by applying a first-order Taylor expansion, as
introduced in [12]:

f(x) ≈ wTx+ b , w =
∂f

∂x

∣∣∣∣
x0

.
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In their simplest form, the saliency maps of back-propagation
methods are equivalent to the gradient value on the input [12].
A second approach [13] would multiply the gradient by the
input values to leverage out the gradients that don’t carry rel-
evant information. A last wave of methods proposes including
a reference point and hence more closely resembling the Tay-
lor approximation. The main examples of this trend are in-
tegrated gradients [14], deep Taylor decomposition [15] and
DeepLIFT [11]. They overcome problems of previous meth-
ods such as saturation or discontinuities in the gradient, al-
though they bring the extra difficulty of choosing an appro-
priate reference point.

2. PREVIOUS WORK

Perturbation-based approaches are prevalent, with perturba-
tion as genetic mutations [16, 17], small sliding windows
with random genetic code [18] or known motifs [19], among
others. Gradient-based approaches have barely been trans-
lated to the biological field. Lanchantin et al. [20] include
saliency maps with the form of gradient × input for TF bind-
ing site classification. They extracted the window with the
highest score from each saliency map and compared them
with a database of known motifs, matching almost half of
the motifs thus produced. Shrikumar et al. [11] developed
the reference-based saliency map technique DeepLIFT and
simulated a motif detection task within a genomic sequence
to prove its effectiveness. Finnegan and Song [21] utilised
Markov chain Monte Carlo methods to withdraw samples
from the maximum entropy distribution around a single se-
quence and assessed the importance scores by looking at the
variance of the samples at each position. This method was
applied to a previously trained DNA-protein binding CNN
and proved to have better results than DeepLIFT.

All these methods address classification problems where
there is a single output (classification task) for each sequence.
A significant difference between this work and previous pa-
pers that make use of saliency maps is that they focus on
many-to-one classification problems (one output class per in-
put sequence/image), whereas our classification task is many-
to-many (each position of the sequences is assigned a class),
producing as many saliency maps as positions in a sequence.
To the best of our knowledge, interpretability techniques have
not been applied yet to this sort of problems.

3. METHODS

The experiments used the database produced and made pub-
lic by Zhou and Troyanskaya [4]. It includes two sub-sets
(training and test, with 5534 and 514 protein sequences of
varying length, respectively) of proteins that come from dif-
ferent sources after removing the proteins that share 25% or
more similarity, thus ensuring that the test set is composed of
totally new samples. The proteins in the dataset already come

Q8 grouping Explanation %
α-helix H Helix with 4 turns 34.54
310-helix G Smaller helix with 3 turns 3.91
pi-helix I Bigger helix with 5 turns 0.02
β-bridge B Isolated β-bridge 1.03
β-strand E Participates in β-ladders 21.78

Turn T Turns smaller than a helix 11.28
Bend S Curved piece 8.26
Loop L Sometimes also as coil (C) 19.19

Table 1. Targets for the secondary structure prediction prob-
lem, as defined by Kabsch and Sander [1] in their Dictionary
of Secondary Structure or Proteins (DSSP) and their presence
on the training set.

in one-hot form, along with their Q8 class in one-hot as well
and PSSM values. The dataset is heavily imbalanced, as it
can be seen in Table 1

The network architecture is composed of three successive
convolutional neural networks and a dense layer on top. Each
of the convolutional layers contains three sets of filters of size
3, 5 and 7, respectively, with 16 filters per size. There are
skip connections at every convolutional layer. The dense layer
has 200 neurons and is connected to the softmax output layer.
The convolution operations are carried out with padding at
each end of the sequence to preserve the length throughout the
process. The total window size of the network is 19, meaning
that for making a single secondary structure classification the
network obtains information from 9 adjacent positions at each
side. The network has been built and trained using the open-
source code developed by Jurtz et al. [9].

Saliency maps are calculated by the conventional tech-
nique of computing the gradient of the output with respect
to the inputs and multiplying it by the value of the input (gra-
dient × input) [22]. Every single position in a sequence pro-
duces a saliency map that spans the width of the input vector
of size 42 and 9 positions to each side, due to the architec-
ture’s window size of 19. Each output class has its indepen-
dent saliency values, so the total size of a position saliency
map is 8x42x19.

The presence of overlapping saliency maps allows for dif-
ferent ways in which to aggregate them to extract meaningful
information. If we focus on a sequence of length l and want to
obtain a single sequence-specific saliency map, we can add up
the overlapping areas to form a saliency map of size 8x42xl.
By changing the focus to a broader look on what the network
has learnt, the addition of the saliency maps for the positions
in all sequences could create a single saliency map of size
8x42x19 that shows an average behaviour of the network.
From this map, we can extract general information about a
particular class (creating a class-specific saliency map) or
about a particular input (PSSM-specific saliency map).
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Fig. 1. Mean sequence accuracy against sequence length for
the proteins in test set. Each point represents a single protein
sequence and the horizontal line marks the total mean accu-
racy. On top, sequences with majority of helices (H, G, I);
β-sheets (E, B) at the middle; and coils (L, S, T) below. Best
accuracies are achieved with high percentage of helices and
worst accuracies with with majority of coils.

4. RESULTS

The network described aboved was trained for 400 epochs
with regularisation parameter λ = 10−4, and learning rate
µ = 10−4. Five of such networks are trained (with the stop-
ping criteria decided via a validation subset1) and form an en-
semble that reaches an accuracy of 69.23% on the test set, not
far from the 71% reached by the state-of-the-art [3]. The aim
of this work is not to outperform the state-of-the-art predic-
tions, but to build a network with a moderately simple struc-
ture (to keep the calculation times of saliency maps on reason-
able levels) and fair performance. We believe that the tech-
niques of analysis here presented and the conclusions with-
drawn from them can be transferred to current state-of-the-art
methods without losing validity.

Figures 1 and 2 show more information on the network
performance. Figure 1 shows the distribution of per-sequence
mean accuracy over different sequence lengths. As it could be
expected, the variance in accuracy increases with shorter se-
quences. Higher accuracies can be expected from sequences
rich in helices and lower accuracies for sequences high in
coils. Figure 2 displays the resulting confusion matrix of the
predictions on the test set. It is similar to the ones obtained
on other state-of-the-art networks [6]. The lack of π-helix (I)
predictions is noticeable; its presence in the dataset is so rare
that the machine keeps high accuracy even when ignoring it.

1The validation subset contains 512 sequences, 10% of the training set.
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515 47 325 13 0 84 92 105

2171 30 14427 60 0 582 331 415

541 5 217 906 0 766 114 583

5 0 2 0 0 21 0 2

748 7 459 320 0 23743 156 724

2898 13 942 162 0 662 2063 1576

1568 3 538 463 0 1631 611 5199

Fig. 2. Confusion matrix of the test set. Classes I and B are
scarce in the dataset. Classes G, H and T have relatively high
levels of confusion because they are all composed of turns,
but with different lengths. Loops (L) are a loose category and
easily misclassified.

β-bridges (B) are also largely misrepresented for the same
reasons. Loops present high levels of confusion with other
classes, probably due to the arbitrary discretisation into eight
classes, while it has been pointed that the transition between
structures and coils is not sharp [23].

Saliency maps can be used as additional evidence for the-
ories around protein secondary structure. For instance, one
point of concern has been the inclusion of inputs with differ-
ent nature: a one-hot amino-acid input along a PSSM dense
vector. Some authors [8, 7] embedded the one-hot vector into
a denser space, reporting a marginal improvement in accuracy
(0.5% and 0.4%, respectively). Spencer et al. [24] reported
a 2% Q3 improvement by not including the one-hot amino-
acids at all. Saliency maps provide information about the im-
portance that different parts of the input have, so direct com-
parison of both kinds of inputs can be made by looking at their
associated saliency values. To do so, each saliency map is
split into two halves, corresponding to amino-acid and PSSM,
respectively, and all the values of each half are summed up in
absolute value to form a single saliency score. The compar-
ison of such scores for all positions in the dataset is made in
Figure 3, revealing that the PSSM inputs had four times or
more relevance for making the classification decision in the
great majority of positions, with around half of them having
seven times or more relevance. We further validate these find-
ings by training a second network that uses PSSM inputs but
ignores the one-hot amino-acids, all the other things remain-
ing equal. An ensemble of five of these networks reaches an
accuracy of 69.36% on the test set, 0.14% points higher than
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Fig. 3. Cumulative histogram with relative strength of PSSM
saliency scores as compared to amino-acid saliency scores.

Labels Architecture Accuracy

Q8 Original 69.23%
PSSM-only 69.36%

H / non-H Right positions only 86.60%
Left positions only 80.81%

Table 2. Accuracies on the test set for different network con-
figurations. Ensembles of networks performed better by ig-
noring one-hot amino-acids. Networks that look on a window
of size nine at the right side predict class H better than when
they regard the nine left positions.

the original configuration (see Table 2).

Another useful application of saliency maps can be the
study of spatial importance around the predicted position, i.e.
where the network is looking at when classifying. Figure 4
includes the average saliency spatial profiles for each class.
The construction of each profile has been made as follows.
For each correctly predicted position of the class, the cor-
responding 42x19 slice of the saliency map is extracted and
summed up over the feature dimensions, leading to a profile
vector of size 19. Figure 4 shows the average of all of such
profiles grouped by class, with profiles coming from both the
training and test set. The lines reveal which positions were
more relevant for predicting the class. For instance, the α-
helices (H) hold some periodicity at the right side and large
asymmetry. The periodicity goes in line with the structure of
helices, which are a succession of turns. The asymmetry can
point to a strong dependency on posterior amino-acids when
the protein chain is formed. To validate this finding, we re-
train two new networks with exclusively binary classification
for the class H. The networks have an identical structure to
the previous ones except that one of them ignores the input
from the left positions and the other the ones from the right
positions2. While the network making use of the left positions
obtains an accuracy of 80.81% on the test set, the one utilis-
ing the right positions achieves 86.60%, supporting the idea
that future positions are more significant in the formation of
an α-helix (Table 2).

2This is achieved by zeroing out different halves of the parameters on the
convolutional filters.
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Fig. 4. Average saliency profiles for the eight classes. On top,
the three helix classes; in the middle, the two β classes; be-
low, the three coil classes. The legends show the number of
profiles averaged over for each class. The focus is on the dis-
tribution of each class over the window positions, so each line
has been independently normalized for a clearer visualisation
of the shapes, and scales only share the zero reference.

5. CONCLUSIONS

This work demonstrates that saliency maps could help to ex-
plain black box decisions made by deep neural networks on
the biological inference problem of predicting protein sec-
ondary structures. While these methods have been developed
in the field of computer vision, their application to biologi-
cal sequence analysis is novel. By this application, we reach
two conclusions. Firstly, one-hot amino-acid inputs contain
far less useful information than Position Specific Substitu-
tion Matrices, to the point of not losing significative perfor-
mance with the omission of the earlier. Secondly, the predic-
tion of α-helices relies more on amino-acids to the right of
the predicted position than to the left, which may be a con-
sequence of the biological processes in protein formation and
folding. The benefits of the presented techniques can be of
double value: helping biologist understand to get a deeper un-
derstanding of the underlying biological processes, and pro-
viding machine learning researchers with diagnostic tools for
spotting flaws in their systems. Future work should focus on
more advanced saliency maps techniques, as well as further
methods for analysing and extracting information from them.
A wider window width could also be explored, as it has been
suggested that β-sheets rely on longer interactions [7, 25].
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