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ABSTRACT

Most of the bioinformatics tools used in the analysis of gene
expression data require complete data matrices. Missing val-
ues in data can adversely influence the downstream analy-
sis for diagnostics and treatment. Several methods to impute
missing values in gene data have been developed. However,
most of these work at high levels of observability. In this pa-
per, we have proposed a novel 2-stage method, namely, TV-
DCT for imputing incomplete gene expression matrices using
Total Variation denoising and Discrete Cosine Transform Do-
main Sparsity (TV-DCT) that achieves smaller imputation er-
rors, consistently, at all levels of observability. The proposed
method has been compared with three state-of-the-art matrix
completion methods on three different cancer datasets and is
observed to perform better. The validation of imputed data
has been demonstrated on the application of classification.

Index Terms— Gene expression data, matrix imputation,
sparse recovery, machine learning, cancer treatment

1. INTRODUCTION
Microarray technology facilitates estimation of expression
levels of thousands of genes simultaneously under different
experimental conditions. Gene expression data generated
from such experiments is subsequently analyzed using sta-
tistical or machine learning methods to extract relevant in-
formation for disease diagnostics and treatment, particularly,
in cancer. However, gene expression data suffers from the
problem of missing values that leads to inaccurate analysis.
Missing values often occur due to various reasons, such as
insufficient resolution, image corruption, dust or scratches on
the slide [1]. A simple solution is to repeat the experiment.
However, this is expensive as well as time consuming. There-
fore, it is pertinent to recover missing values of microarray
data by developing computational and statistical methods.

Some of the early methods that were implemented to
deal with incomplete data include ZEROimpute (replacing
missing entries with zeros), ROWimpute and COLimpute
(replacing them with the averaged values of the observed
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entries of the corresponding rows or columns) [2]. However,
their performance is sub-optimal because they do not ac-
count for the correlation among genes. There exists two main
classes of methods depending on the manner in which cor-
relation among genes is exploited, namely, local and global
approaches [3]. k nearest-neighbor imputation (KNNimpute)
[4], GMCimpute [5], SLSSimpute [6] are few examples of
local approaches which utilize local correlation among the
genes and perform optimally when the data is heterogeneous.
Global approach based methods such as SVDimpute [4],
Bayesian Principal Component Analysis (BPCA) [7] exploit
the global covariance information resulting from the entire
gene expression matrix and do not perform optimally when
data is heterogenous. Hybrid methods such as HPM-MI [8],
GA+SVR [9], MIGEC [10] also exist in literature that of-
fer better performance irrespective of the type of correlation
present in the data. However, most of these methods estimate
gene expression values at high observability of data, e.g.,
when 70% or more data is available and 30% or less is miss-
ing. In recent times, researchers are predicting expression
data values with very less amount of observed data that is as
low as 10%. It is universally known that in any biological
process, group of genes act together; thereby, contributing to
the interdependence between the expression levels of genes.
This interdependence leads to a highly correlated data matrix
(of subjects versus genes). Therefore, gene expression matrix
can be thought of as a low rank matrix that can be embed-
ded into a lower dimensional subspace. Thus, the problem
of imputing missing values of gene expression data can be
considered as a matrix completion problem.

Today, matrix completion is an active research problem
in various applications, say in recommender systems. Of the
developed methods, LMaFit [11] (based on matrix factoriza-
tion), LogDet [12] (implementing nuclear norm minimiza-
tion), and Robust PCA (RPCA) [13] (robust to outliers and
implements feature reduction) can be stated as three different
types of state-of-the-art methods on matrix completion. These
advanced methods are still not popular in genomics research,
though one low rank constrained matrix completion method
has been utilized recently in genomics [14].

In this paper, we propose a novel 2-stage method, namely,
TV-DCT method for predicting missing values in gene ex-
pression data with the following salient features:
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1. In the first stage, missing value recovery problem is for-
mulated as compressive sensing based reconstruction
with sparsity in the Discrete Cosine Transform (DCT).
Such an approach has been recently used in [15] as a
proof of concept to illustrate that DCT acts as approx-
imate Karhunen-Loève transform for a large class of
signals. Recently, this formulation has also been tried
for data recovery in wireless sensor networks [16].

2. The second stage is formulated as the denoising prob-
lem assuming that the first stage recovery would need
further improvement. This is carried out with total vari-
ation constraint applied on the data of each gene across
patients, assuming that, in general, expression values of
a particular gene across subjects will not vary much.

3. Missing value imputation is shown on three cancer
dataset at low as well as high observability of data.

4. The performance of the proposed method is validated
in the application of classification.

The performance of the proposed method is observed to be
better compared to the existing state-of-the-art matrix com-
pletion methods (devised in other applications as well).

2. DATASET DESCRIPTION
Three publicly available microarray gene expression datasets:
ALLAML [17, 18], lung [17, 19] and Myeloma [20]
have been used with details provided in Table-1. Dataset
ALLAML contains expression values of 7129 genes across
72 individuals. This data consists of two classes depending
on whether an individual suffers from Acute Lymphocytic
Leukemia ALL or Acute Myeloid Leukemia AML. Label
‘1’ belongs to ALL and label ‘2’ to AML. lung dataset con-
tains expression values of 3312 gene across 203 individuals
and has five classes. Label ‘1’ corresponds to lung adeno-
carcinomas, label ‘2’ belongs to normal healthy individual,
label ‘3’ belongs to squamous-cell lung carcinoma, and label
’4’ represents pulmonary carcinoids, and label ‘5’ belongs to
small-cell lung carcinoma. Myeloma dataset contains ex-
pression values of 33297 gene across 99 individuals and has
four classes. Label ‘1’ belongs to MGUS (precursor stage of
Multiple Myeloma), label ‘2’ belongs to Multiple Myeloma
(MM), label ‘3’ belongs to Smouldering Multiple Myeloma
(SMM), and label ’4’ to healthy individuals.

Table 1: Dataset Description
Dataset #Subjects #Genes #Classes

ALLAML 72 7129 2
lung 203 3312 5

Myeloma 99 33297 4

3. PROPOSED TV-DCT METHOD
The proposed TV-DCT method for completing the gene ex-
pression matrix is a 2-stage method. Stage-1 is the compres-
sive sensing based framework used for matrix completion,
while stage-2 is a denoising framework for the extraction of
denoised data from the matrix recovered in stage-1.

Stage-1: Compressive Sensing based matrix Comple-
tion: First, we formulate the problem of matrix completion as
CS-based reconstruction. To this end, we consider the incom-
plete matrix Y of size m × n, where m denotes the number
of subjects and n denotes the number of genes. Assuming
that the expression of any gene for all subjects will be similar,
data within a column would exhibit sparsity in some trans-
form domain. Hence, we propose to recover missing data
column-wise, i.e., by applying CS framework on each col-
umn of the matrix Y. The sensing matrix Φi of size ri ×m is
constructed for every ith column, where ri denotes the num-
ber of available data entries of that column. Corresponding
to each observed entry (that is not missing) of the ith column,
there is a row in Φi with an entry ‘1’ for the corresponding
position and zeros in the rest of the positions. For example,
assume y =

[
x1 x3 x6

]T
is the observed vector where

only x1, x3 and x6 are available and, x2, x4 and x5 are miss-
ing. Then, the vector y can be written as y = Φx, where the

sensing matrix is written as Φ =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

 and

x is the desired vector to be recovered. Thus, missing val-
ues have been interpreted as if those values were not sensed.
This formulation converts the missing data recovery problem
to CS-based data reconstruction.

In order to choose the sparsifying transform, we studied
the columns of the gene expression matrix in the DCT domain
and observe that these are highly sparse. This appears intu-
itively correct because, as stated earlier, every column repre-
sents the expression values of a particular gene across sub-
jects. Biologically, these expression values would be similar
and hence, data within any column would be slowly vary-
ing. Since DCT acts as a KL-type basis for slow-varying sig-
nals [15], data exhibits sparsity in the DCT domain. With
this information, we recover each column of matrix Y using
the CS-based reconstruction with the sparsity constraint on
the columns in the DCT domain. The following optimization
problem is solved to recover the ith column of matrix Y

min
x̃i

(||yi − Φix̃i||22 + λ1||Dx̃i||1), (1)

where yi contains the observed entries of the ith column of
matrix Y, Φi is the corresponding sensing matrix for the ith

column, and x̃i is the corresponding recovered column. The
above problem is also called as analysis-prior formulation and
is non-separable because of the presence of DCT matrix D
with x̃i. Since DCT is an orthogonal transform, we can easily
transform it to synthesis prior formulation as

min
z̃i

(||yi − ΦiDT zi||22 + λ1||zi||1), (2)

where Dx̃i = zi. The above problem is now separable and can
be easily solved using the iterative soft thresholding algorithm
(ISTA) [21]. The update rule for zi is

zk+1
i = soft

{
zki +

1

α
(DΦT

i )(yi − ΦiDT zki ),
λ1
2α

}
, (3)

x̃i = DT zi, (4)
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X̃ = [x̃1, x̃2, .....x̃n (5)

where X̃ is the recovered complete matrix and ‘soft’ denotes
the soft thresholding operator. The above optimization prob-
lem is solved using ‘spgl’ solver that optimally chooses the
regularization parameter λ1 [22] [23].

Stage-2: TV Denoising: Matrix X̃ recovered from stage-
1 is assumed to be noisy and hence, total variation (TV) based
denoising is used in the second stage of the proposed algo-
rithm. It is often used in image processing applications to re-
duce noise in the image and simultaneously preserve its edges
[24]. We use TV for noise removal on individual gene’s data
across subjects assuming that the expression values of a par-
ticular gene will vary slowly over different subjects. Total
variation filtering algorithm presented in [25] is used in TV-
DCT which is formulated as

min
xi

(||xi − x̃i||22 + λ2||Axi||1), (6)

where i ranges from 1 to n (number of columns/ genes). A is a

difference operator defined as A =


−1 1

−1 1
. . .
−1 1


and it maps a vector xi to

(Axki ) = xk
i − xk+1

i . (7)
Dual formulation of above is used to solve the optimization
framework (because of non-differentiability of l1-norm) as

min
xi

max
|wi|≤1

(||xi − x̃i||22 + λ2wT
i Axi), (8)

where wi is an auxiliary vector such that
||xi||1 = max

|wi|≤1
(wT

i xi). (9)

TV denoising problem is minimized using iterative clip-
ping algorithm with update equations as

xk+1
i = x̃i − AT wk

i , (10)

wk+1
i = clip

{
wk

i + (
1

α
)Axk+1

i ,
λ2
2

}
, (11)

for k ≥ 0 with w(0) = 0 and α ≥ maxeig(AAT ).
The regularization parameter λ2 controls how much

smoothing is performed and is determined empirically us-
ing grid search. It was set to value 1.2 forALLAML dataset,
0.3 for lung dataset and 0.3 for Myeloma dataset in our ex-
periments. After denoising, the recovered matrix is organized
as xj,i = x̂j,i, if Ωj,i = 1, (12)

where Ωj,i = 1 if the entry at (j, i)th position is observed in
the incomplete matrix and Ωj,i = 0 if the entry is missing.
x̂j,i are the entries in the original matrix X̂.

4. RESULTS
4.1. Experiments and Evaluation
Simulations are carried out by randomly introducing missing
values in the complete gene expression data matrix X with
missing rates starting from 20% to 90%. Missing values are
estimated using the proposed imputation method and some

existing conventional methods. Imputed values are then com-
pared to the original values for evaluating the performance of
the method. Normalized root mean squared error (NRMSE)
is used as the evaluation metric and is defined as

NRMSE =
||X̂(original)− X(recovered)||F

||X̂(original)||F
(13)

Algorithm 1: Proposed TV-DCT Method

1 Stage 1 - Matrix Recovery
Input: Y (Input incomplete matrix), DCT matrix D

2 for loop from i = 1........n
3 Calculate Φi for all i using yi
4 Update zi using (3)
5 Calculate x̃i = DT zi
6 end for

7 Obtain X̃ from x̃i
Output: X̃ (Recovered Matrix from Stage-1)

8 Stage 2 - Denoising
Input: X̃(Noisy matrix), A (Difference Operator)

9 for loop from i = 1........n
10 while converge:
11 Update xi using (10)
12 Update wi using (11)
13 end while
14 end for
15 Obtain X from xi
16 Replace the already observed entries in X using (12)

Output: X (Recovered Matrix)
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Fig. 1: NRMSE on imputed matrices of ALLAML at varying
sampling ratios.

We evaluated our proposed TV-DCT method for log nor-
malized as well as unnormalized data. It is clear from Fig. 1
that Stage-1 performs better with normalized data than with
unnormalized data. After Stage-2 denoising, results are al-
most consistent with each other. Rest of the results are shown
in Fig. 2. At every sampling percentage, NRMSE is aver-
aged over 10 separate runs with random sampling in every
run. We also compared the performance of the proposed TV-
DCT method with three existing state-of-the-art methods for
matrix completion namely, LogDet [12], RPCA-GD [13] and
LMaFit [11], and used LRSlibrary [26] for computing results
with these methods (refer to Fig. 2 and 3).

From Figure 2, TV-DCT method is observed to outper-
form other methods. Least NRMSE is 0.15, 0.035 and 0.024
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Fig. 2: Comparison of the proposed TV-DCT method with existing methods at different percentages of observed input data.

Table 2: Classification accuracy and F1 scores on different sampling percentage of incomplete matrix and the recovered/imputed matrix
using proposed TV-DCT method for ALLAML dataset.

Accuracy F1 score
Classifier Random Forest Linear SVM Random Forest Linear SVM

SR Observed Recovered Observed Recovered Observed Recovered Observed Recovered
20 0.65 0.96 0.67 0.90 0.77 0.96 .79 .90
30 0.65 0.96 0.67 0.93 0.77 0.96 .80 .95
40 0.69 0.97 0.72 0.94 0.79 0.97 .82 .95
50 0.71 0.97 0.74 0.98 0.80 0.97 .83 .98
60 0.75 0.97 0.81 0.99 0.83 0.97 .87 .99
70 0.77 0.96 0.86 0.99 0.84 0.97 .90 .99
80 0.80 0.95 0.91 0.99 0.86 0.96 .93 .99
90 0.85 0.95 0.94 0.99 0.88 0.96 .96 .99

at 90% observed data for ALLAML, lung and Myeloma
datasets respectively. TV-DCT method outperforms other
methods even at low observability of 20% of the data on
both ALLAML and lung dataset and is as good as LogDet on
Myeloma dataset. However, LogDet is computationally ex-
pensive as compared to our method for large matrices of size
99 × 33297. Moreover, all these methods perform optimally
when their parameters are tuned properly. It should be noted
that we created missing data little conservatively by dropping
data at matrix level because this may lead to missing of all
subjects’ data for any gene at low observability. While the
three state-of-the-art methods exploiting the properties of 2D
data matrix could still function, it could pose challenges to
the proposed method that works on each gene data individu-
ally. Despite that, we observe that TV-DCT performs largely
better to the existing methods.
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Fig. 3: Classification accuracy and F1 scores obtained on imputed

matrices of ALLAML at varying sampling ratios.
4.2. Validation
We validated simulation results by performing classifica-
tion on incomplete matrices and imputed matrices of the
ALLAML dataset. We performed features reduction using

mutual informarion criterion, where the number of optimal
features were obtained by grid search. 5-fold cross vali-
dation was performed 20 times and averaged accuracy has
been reported. These experiments were performed with
Python 2.7 and Sklearn 0.19.1 library. We calculated classi-
fication accuracy and F1 score at each sampling ratio from
20% to 90%. The accuracy and F1 score are defined as:
Accuracy = 1

N

∑N
i=1 1(xi = x̃i) and F1 = 2×precision×recall

precision+recall ,
where N is the total number of samples in the dataset, xi is
the class label of the ith sample, and x̃i is the class label deter-
mined by the classifier. We used Random Forest and Linear
SVM classifiers. Linear SVM provided best classification
results. It is evident from Table-2 that the classification accu-
racy and F1 scores are low on incomplete matrices compared
to those obtained on imputed matrices. We also compared
the classification accuracy on imputed matrices obtained via
existing methods as shown in Fig. 3. Classification accu-
racy is highest when gene expression data is imputed by the
proposed TV-DCT method. Owing to space constraints, clas-
sification results are not shown on the other two datasets,
although similar performance is noted.

5. CONCLUSION
Missing value imputation in gene expression data is impor-
tant for appropriate analysis in cancer research. In this study,
we have presented a novel 2-stage TV-DCT matrix imputation
method. TV-DCT is tested on three different cancer datasets
at low as well as high observability of data. The comparative
performance of the TV-DCT method is observed to be supe-
rior to the state-of-the-art matrix completion methods in terms
of NRMSE and classification accuracy.

1247



6. REFERENCES

[1] Qian Xiang, Xianhua Dai, Yangyang Deng, Caisheng He,
Jiang Wang, Jihua Feng, and Zhiming Dai, “Missing value
imputation for microarray gene expression data using histone
acetylation information,” BMC bioinformatics, vol. 9, no. 1,
pp. 252, 2008.

[2] A.A. Alizadeh et al., “Distinct types of diffuse large b-cell
lymphoma identified by gene expression profiling,” Nature,
vol. 403, no. 6769, pp. 503, 2000.

[3] A. Wee-Chung Liew et al., “Missing value imputation for gene
expression data: computational techniques to recover missing
data from available information,” Briefings in Bioinformatics,
vol. 12, no. 5, pp. 498–513, 2010.

[4] O. Troyanskaya et al., “Missing value estimation methods for
dna microarrays,” Bioinformatics, vol. 17, no. 6, pp. 520–525,
2001.

[5] Ming Ouyang, William J Welsh, and Panos Georgopoulos,
“Gaussian mixture clustering and imputation of microarray
data,” Bioinformatics, vol. 20, no. 6, pp. 917–923, 2004.

[6] Xiaobai Zhang, Xiaofeng Song, Huinan Wang, and Huanping
Zhang, “Sequential local least squares imputation estimating
missing value of microarray data,” Computers in biology and
medicine, vol. 38, no. 10, pp. 1112–1120, 2008.

[7] S. Oba et al., “A Bayesian missing value estimation method
for gene expression profile data,” Bioinformatics, vol. 19, no.
16, pp. 2088–2096, 2003.

[8] Archana Purwar and Sandeep Kumar Singh, “Hybrid predic-
tion model with missing value imputation for medical data,”
Expert Systems with Applications, vol. 42, no. 13, pp. 5621–
5631, 2015.

[9] Ibrahim Berkan Aydilek and Ahmet Arslan, “A hybrid method
for imputation of missing values using optimized fuzzy c-
means with support vector regression and a genetic algorithm,”
Information Sciences, vol. 233, pp. 25–35, 2013.

[10] Jing Tian, Bing Yu, Dan Yu, and Shilong Ma, “Missing data
analyses: a hybrid multiple imputation algorithm using gray
system theory and entropy based on clustering,” Applied intel-
ligence, vol. 40, no. 2, pp. 376–388, 2014.

[11] Z. Wen, W. Yin, and Y. Zhang, “Solving a low-rank factor-
ization model for matrix completion by a nonlinear successive
over-relaxation algorithm,” Mathematical Programming Com-
putation, vol. 4, no. 4, pp. 333–361, 2012.

[12] Z. Kang, C. Peng, and Q. Cheng, “Top-N recommender sys-
tem via matrix completion.,” in AAAI, 2016, pp. 179–185.

[13] X. Yi et al., “Fast algorithms for robust pca via gradient de-
scent,” in Advances in NIPS, 2016, pp. 4152–4160.

[14] A. Kapur et al., “Gene expression prediction using low-rank
matrix completion,” BMC Bioinformatics, vol. 17, no. 1, pp.
243, 2016.

[15] A. Gupta, S.D. Joshi, and P. Singh, “On the approximate dis-
crete KLT of fractional Brownian motion and applications,”
Journal of the Franklin Institute, 2018.

[16] N. Jain, A. Gupta, and V. Ashok Bohara, “PCI-MDR: Miss-
ing Data Recovery in Wireless Sensor Networks using Partial
Canonical Identity Matrix,” IEEE Wireless Communications
Letters, 2018.

[17] J. Li et al., “Feature selection: A data perspective,” ACM
Computing Surveys (CSUR), vol. 50, no. 6, pp. 94, 2017.

[18] T.R. Golub et al., “Molecular classification of cancer: class
discovery and class prediction by gene expression monitor-
ing,” science, vol. 286, no. 5439, pp. 531–537, 1999.

[19] A. Bhattacharjee et al., “Classification of human lung carci-
nomas by mrna expression profiling reveals distinct adenocar-
cinoma subclasses,” Proceedings of the National Academy of
Sciences, vol. 98, no. 24, pp. 13790–13795, 2001.
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