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ABSTRACT

Computer-aided detection and diagnosis (CAD) have been
applied to many departments of medical institutions, and
early detection of diseases can prevent serious health loss.
Pulmonary diseases generate negative effects on human
health, even leading to death. The chest X-ray is a common
examination for diagnosis of pulmonary diseases. The expe-
rienced radiologist can quickly infer patients’ symptoms by
screening the chest X-ray image. While in some developing
countries or remote rural areas, due to the lack of experienced
radiologists or doctors, patients may be misdiagnosed. Many
efforts have been spent on developing an effective auxiliary
detection system to provide medical workers with evidence
on diseases. In particular, detecting pulmonary complica-
tion via chest X-ray images is one of the most challenging
tasks. In this paper, we transform the pulmonary complica-
tions detection task into a multi-binary classification task for
each pulmonary pathology, and propose a new classification
model, DenXFPN (for X-ray). DenXFPN combines multiple
feature maps at different scales extracted through a densely
convolutional neural network. Our model achieves 0.827
on the area under the receiver operating characteristic curve
(AUC) metric on average, which outperforms the state-of-
the-art results on most of all pathologies in the Chest X-ray14
dataset.

Index Terms— chest X-rays classification, convolutional
neural network, feature pyramid

1. INTRODUCTION

The past decade has witnessed the rapid development of the
intelligent medical diagnosis system [1]. It has been widely
used for assisting the doctors to provide the accurate and com-
prehensive diagnosis [2]. The chest X-ray is one typical ap-
plication which greatly benefits from the intelligent medical
diagnosis system. For example, the chest X-ray is the most
commonly available radiological examinations for screening
and diagnosis of many pulmonary diseases, e.g., Pneumonia,
Nodule, Pneumothorax, Infiltration. According to a recent re-
port [3], pneumonia kills nearly 1 million children younger
than five years of age each year globally, which is greater
than the number of deaths from any infectious diseases such
as HIV infection, malaria, or tuberculosis. Hence, the early
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detection of these kinds of diseases could save lives, and the
accurate results from the X-rays play a crucial role in helping
patients obtain timely treatment.

Recently, many efforts have been spent on improving
the accuracy in identifying diseases from the bio-signal. The
state-of-the-art e-health techniques have been verified to show
good performance in fine-grained disease analysis [4] and
medical feature extraction [5]. Furthermore, the X-rays im-
age analysis benefits from the prosperity of the deep learning
methods [6, 7]. Regarding the analysis of the chest X-ray, it
is applied to detect pulmonary diseases in chest X-ray images
by using convolutional neural networks which are pre-trained
on large-scale datasets for general image classification. Prior
works of AlexNet [8] and Densely Connected Convolutional
Networks (DenseNet) [9] can help identify the detailed evi-
dence in the image for diagnosis of the chest-related diseases.
For example, Yao et al. [10] and Pranav Rajpurkar et al.
[11] both use DenseNet to conduct the feature extraction. In
addition, it is an important method to enhance the accuracy of
the detection by using feature pyramid, e.g., Spatial Pyramid
Pooling (SPP net) [12], Single Shot MultiBox Detector (SSD)
[13], Feature Pyramid Network (FPN) [14].

(b) Pneumothorax

(a) Pneumonia

Fig. 1. Tllustration of two examples of NIH Chest X-ray14
images. The diseases are usually diagnosed via small hints in
the image.

However, due to the uniqueness of medical images com-
pared to regular images and the scarcity of medical region
annotation in the image, clinical diagnosis by chest X-ray im-
ages is more difficult than general classification tasks via reg-
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ular images. It usually faces the following three challenges:

e No region annotation in images. Doctors provide
comprehensive diagnoses of X-ray images through
their extensive experience. In the X-ray dataset, there
is usually only the label information of the disease, but
there lack indications of the specific annotation of the
disease in the image. Therefore, an effective machine-
assisted decision-making model requires automated
feature extraction of X-ray images and gives accurate
diagnoses.

e High accuracy requirements. Medical diagnosis re-
quires high accuracy, as misdiagnosis can lead to nega-
tive effect. However, not all doctors have sophisticated
experience, especially in developing countries and re-
mote rural areas. The CAD should provide the confi-
dent diagnosis so that the inexperienced medical work-
ers can refer to the comment generated by the CAD.

o Pulmonary complications. Early and accurate detec-
tion of pulmonary complications guarantees that the pa-
tients would receive proper treatment. The CAD is
expected to identify the evidence for the pulmonary
complications without false alarms so that the medical
workers can receive complete information of the dis-
eases and suit the remedy to the case.

This paper is conducted on the largest open source chest
X-ray dataset, namely Chest X-rayl4 [15], which contains
more than 100 thousand images. The dataset was proposed by
Wang et al. [15] by using natural neural language techniques
for extracting disease categories from medical reports. Fig.1
illustrates two example of chest X-ray images, where we
can see that the diagnosis of diseases is usually determined
via detailed information in the image. Based on the dataset,
we transform the task into 14 binary classifications corre-
sponding to the 14 pulmonary complications, as the patients
may have more than one diseases at the same time. In order
to address the above challenges, we proposed DenXFPN.
DenXFPN leverages four serial Dense Blocks, Bottleneck
Layers and Transition layers to learn knowledge of different
scales. The features generated by each transition layer are
then concatenated by an FPN and form a feature map. The
feature map is treated as the evidence for identifying whether
a disease occurs in the X-ray image. We compare the perfor-
mance of our proposed network with several state-of-the-art
models on the Chest X-ray14 dataset. Our network outper-
forms the state-of-the-art results on 12 of 14 pathologies in
the Chest X-ray14, and achieves the best performance on the
AUC metric on average over 14 pathologies. Further, the
performance of DenXFPN on the remaining two pathologies
are also close to the state-of-the-art results.

2. DESIGN OF DENXFPN

2.1. Overview of DenXFPN

We propose DenXFPN for the chest X-rays classification task.
As shown in Fig.1, DenXFPN consists of three steps: feature
extraction, feature pyramid and combined feature classifica-
tion.The details are described in Section 2.2 - 2.4.

The input image is fed into a densely-connected convolu-
tional neural network to learn the representation of the image.
We can get four different representation of the image at differ-
ent scales. By using feature pyramid, we upsample the upper
layer and add it to the lower layer. The merged feature maps
are then fed into a convolutional layer with kernel size 3 x 3
and global average pooling for the final representation. Fi-
nally, we concatenate all feature maps as a vector to classify
the 14 pathologies.

2.2. Feature Extraction

The visual features of the image can be extracted by the con-
volutional neural network of which the greatest advance is lo-
cal connectivity and weight sharing, compared with the fully-
connected network. A convolutional layer is composed of
multiple feature maps and each feature map include multiple
neurons. In the high-level neural network, convolution oper-
ation can break through the limitation of the traditional filter
and extract desired features according to an objective func-
tion. Generally, we use the output of the final convolutional
layer as the representation of the input image.

In this work, we adopt Densely Connected Convolutional
Networks (DenseNet) [9] to extract features of the input im-
ages. DenseNet is composed of Dense Blocks, Bottleneck
Layers, and Transition layers. Dense block is the combination
of convolutional layers, batch normalization (BN) and recti-
fied linear unit activation. And in each dense block, the input
from each layer comes from the output of all the previous lay-
ers. In addition, bottleneck layer refers to the 1 x 1 convolu-
tion operation in front of each dense block’s 3 x 3 convolution.
Bottleneck layer can effectively reduce the number of feature
maps, diminish computation by reducing dimensions and in-
tegrate features of each channel. Transition layerisa 1 x 1
convolution layer and a 2 x 2 average pooling layer between
two dense blocks to further compress parameters. Therefore,
DenseNet alleviates gradient vanishing, strengthens the trans-
mission of feature and retrieves features effectively. We use
the output of each transition layer in DenseNet-121 [9] as the
representation of input images. Finally, we integrate all the
individual feature maps as the final feature map by a Feature
Pyramid Networks (FPN).

2.3. Feature Pyramid

Feature Pyramid is a fundamental component of multi-scale
target detection system. Detection on different feature scales
is equivalent to ensemble learning which enables a model to
detect objects across a broad range of scales by scanning the
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Chest X-rays Classification

Fig. 2. Structure of DenXFPN. DenXFPN learns the image features at different scales via dense blocks and transition layers.

The image features are fused to a representation by an FPN.

model over both positions and pyramid levels. However, typi-
cal feature pyramid networks, e.g., Featurized image pyramid,
Single feature map, and Pyramidal feature hierarchy have ob-
vious limitations which make computational time too long
or don’t take full advantage of the underlying features. Fea-
ture Pyramid Networks (FPN) link the high-level features of
low-resolution and high-semantic information with the low-
level features of high-resolution and low-semantic informa-
tion from top to bottom, which make the features at all scales
own rich semantic information.

We upsample the abstract and semantic high-level feature
map, and then horizontally connect the feature to the previ-
ous layer that enhances the representation of the high-level
feature. It is worth noting that the two-layer features of the
lateral connection are the same in spatial dimensions which
take advantage of the underlying location details. After get-
ting feature representation on the transition layer, we add a
1 x 1 convolution kernel to produce a rough feature map.
Then, we upsample the upper layer which can get the same
dimension. We add all the features maps to fuse the knowl-
edge learned from different scales. Last but not least, we use
a 3 x 3 convolution kernel to process the merged feature map
and a global average pooling to generate the final feature map,
in order to eliminate the aliasing effect of upsampling.

As shown in Fig.1, we get four feature vectors by up-
sampling and adding operations on the different feature map
scales. Because of the same dimension on the last two fea-
ture maps, we don’t upsample the final feature map. Conse-
quently, a 1024-dimensional vector is obtained by concate-
nating all feature vectors.

2.4. Combined Feature Classification

Chest X-rays classification is formulated as a multi-binary
classification problem corresponding to each pulmonary
pathology. The images labeled with the diseases will be
treated as positive examples in the corresponding binary
classification task, and all the other images are seen as neg-
ative examples. The outputs of our proposed framework
are a vector of binary labels indicating the diagnosis of the
following 14 pathology classes: Atelectasis, Cardiomegaly,
Effusion, Infiltration, Mass, Nodule, Pneumonia, Pneumoth-
orax, Consolidation, Edema, Emphysema, Fibrosis, Pleural
Thickening, Hernia. We apply an element-wise sigmoid non-
linearity after 14-dimensional fully connected layer. During
training, we take the sum of unweighted binary cross entropy
losses as our loss function to optimize, i.e.,

14
L= [-yclogj. — (1 = ye)log(L —4c)], (1)
c=1

where g, stands for the predicted probability that the image
is diagnosed with the c-th pathology and . indicates whether
the disease does exist.

3. EVALUATION

3.1. Settings

We conduct experiments on the currently largest released
chest X-ray dataset, NIH Chest X-rayl4 dataset. We ran-
domly split the dataset into training set (70%), validation set
(10%) and test set (20%) and we ignore the personal attributes
attached to the images. The weights of the network are ini-
tialized with that from a model pre-trained on ImageNet [16].
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Pathology Wang et al.(2017) [15] Yao et al.(2017) [10] CheXNet [11] Ours

Atelectasis 0.716 0.772 0.795 0.811
Cardiomegaly 0.807 0.904 0.889 0911
Effusion 0.784 0.859 0.871 0.881
Infiltration 0.609 0.695 0.693 0.704
Mass 0.706 0.792 0.815 0.833
Nodule 0.671 0.717 0.721 0.740
Pneumonia 0.633 0.713 0.746 0.761
Pneumothorax 0.809 0.841 0.837 0.859
Consolidation 0.708 0.788 0.782 0.799
Edema 0.835 0.882 0.884 0.883
Emphysema 0.815 0.829 0.876 0.901
Fibrosis 0.769 0.767 0.797 0.815
Pleural Thickening 0.708 0.765 0.759 0.773
Hernia 0.767 0.914 0.883 0.907
Average 0.738 0.798 0.810 0.827

Table 1. Fourteen pathologies and their AUCs, including the average AUC over all pathologies.

We use an initial learning rate of 0.001 that is decayed by 10
when the loss on the validation set no longer decreases after
one epoch. The size of the mini-batches is set to 32 and we
use Adam algorithm [17] with standard parameters (5; = 0.9
and B2 = 0.999) to train the network end-to-end. In our
experiment, we first downscale the images to 224 x 224 and
enhance the images by normalization based on the mean and
standard deviation of images in the ImageNet training set.

3.2. Details of Dataset

The chest X-rayl4 dataset is the currently largest released
chest X-ray dataset sponsored by the National Institutes of
Health(NIH). It provides 112,120 frontal-view X-ray images
with 14 different disease labels collected from 30,805 unique
patients. To create these labels, Wang et al. [15] used Natural
Language Processing (NLP) to text-mine disease classifica-
tions from the associated radiological reports. Importantly,
this dataset demonstrates that these commonly occurred tho-
racic diseases can be detected and even spatially-located via
a unified weakly-supervised multi-label image classification
framework. The labels are expected to be >90% accurate
and suitable for weakly-supervised learning. Chest X-rayl4
can enable the data-hungry deep neural network paradigms
for fostering clinically essential applications.

3.3. Performance Metric

We utilize the area under the curve (AUC) of receiver oper-
ating characteristic (ROC) to evaluate the performance of our
proposed framework. Based on the definition of four basic
measurements, namely true positive (TP), false positive (FP),
true negative (TN), and false negative (FN), we can derive
AUC metrics as listed:

TPR = TP/(TP + FN),
FPR = FP/(FP + TN),

“+o0
AUC = / TPR(T)FPR'(T))dT.

— 0o

3.4. Experiment Results

We compare the proposed DenXFPN with three state-of-
the-art pulmonary pathologies detection algorithms, namely
CheXNet [11] and the models proposed in [15] and [10]. We
reproduce the algorithms and conduct them on our splitting
scheme of the dataset. We report the score of AUC metric of
all algorithms on each of the 14 pathologies, and the results
are listed in Tab. 1. We see that the proposed DenXFPN out-
performs the state-of-the-art results on 12 of 14 pathologies
in the Chest X-rayl4, and achieves the best score on AUC
metric on average over all 14 pathologies. Meanwhile, the
results of the remaining two pathologies are also close to the
state-of-the-art results.

4. CONCLUSIONS

In this paper, we proposed a classification network for the
pathologies detection task, named as DenXFPN. DenXFPN
learns multiple feature maps at different scales via densely-
connected layers and fuses the feature maps via FPN. On the
chest X-ray 14 dataset, compared with several state-of-art pul-
monary pathologies detection algorithms, DenXFPN obtains
the best performance on most pathologies and achieves the
highest score on the AUC metric.
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