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ABSTRACT

As common cancer, breast cancer kills thousands of women
every year. It’s significant to provide doctors computer-aided
diagnosis (CAD) to ease their workload as well as improve
detection quality. Patch-level CNNs are usually used to clas-
sify the breast tissue slice, and the CNNs classify each patch
independently ignoring the spatial correlations, resulting in
wrong isolated label map. However, the probability distribu-
tion of cancer type is related to their adjacent patches. In this
paper, we propose a framework integrating CNN and filter al-
gorithm aimed at extracting spatial information and improv-
ing the performance of the classification. The network was
trained on a breast cancer dataset provided by ICIAR18. For
4-class classification, compared to CNN methods without us-
ing spatial correlations, the proposed method achieved about
10% improvement on accuracy over the validation dataset
and get smoother probability maps. Our experiments also
show that larger kernel size gets better performance. The code
is available at https://github.com/dong100136/Breast-Cancer-
Image-Classification-On-WSI-With-Spatial-Correlations.

Index Terms— CNN, Filter Algorithm, Breast Cancer
Detection, Spatial Correlations

1. INTRODUCTION

Breast cancer is one of the most common cancers in
women of all ages and is the second leading cause of cancer
death among women after lung cancer [1]. R.A. Smith et
al. [2] found that early diagnosis and treatment of breast
cancer can significantly reduce mortality. Currently, for diag-
nosis of breast cancer types, breast tissue biopsy is required.
By surgery or other means, doctors obtain some breast tissue.
The collected tissue samples will be stained with hematoxylin
and eosin (H&E) and observed via an optic microscope for
further analysis. Breast cancer cells have a wide variety of
morphology, which can be divided into benign tumors, in situ
tumors and invasive tumors. An excellent pathologist needs
years of training as well as heavy investment. The number
of breast tissue slices is increasing, causing great pressure
on doctors. Therefore, it is meaningful to study computer-
aided diagnosis (CAD) for breast cancer detection based on
artificial intelligence. With high resolution image data and
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intelligent algorithm, a computer can automatically analyze
the tissue samples and mark suspected lesion in a very short
time. Related algorithms greatly ease the diagnosis workload
and effectively improve the quality of diagnosis [3].

In recent year, convolutional neural network (CNN) has
made a great success on image classification. Patch-level de-
tection on a whole-slide image (WSI) is popular due to the
high resolution of medical images with huge data size, which
is hard for CNNs to handle directly [4][5]. However, spa-
tial correlation is ignored because CNNs deal with each patch
classification independently.

In this paper, we propose an approach to improve the per-
formance of classification of breast cancer. Our approach
integrates CNNs and filter algorithms to make better use of
spatial correlations in the tissue slice comparing with single
patch-level CNNs. The use of spatial information can get
smoother probability maps and better performance in the clas-
sification of breast cancer.

2. RELATED WORK

CNNs, such as VGG [6], ResNet [7], Inception Network
[8][9] have a great success on a wide range of computer vision
tasks, e.g. image classification, object detection, and semantic
segmentation.

Since WSIs usually have high resolution and huge data
size, training a CNN on WSIs directly requires a very large
memory on GPU, which is impossible in most cases. Sev-
eral patch-level CNN methods were proposed by [4][5][10].
Because of the high resolution of WSIs, most of the studies
extract small patches (e.g. 224 × 224 pixels) from WSIs and
predict these patches independently. For each patch, the clas-
sification is independent. But the label distribution of neigh-
boring patches is correlated and neighboring patches usually
get the same label. There are spatial correlations shared be-
tween the small patches and their neighboring patches. Ig-
noring these spatial correlations, the prediction of CNN may
contain the wrong isolated result.

Several researchers have paid attention to spatial correla-
tions between patches. Kong et al. [11] proposed Spatio Net,
which integrated CNN with the 2D long short-term memory
(2D-LSTM). At the same time, some works by Zanjani et
al. [12] also used CNN as feature extractor, and they imple-
mented conditional random field (CRF) as a post-processing
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Fig. 1. Illustration of the framework for the use of spatial information

stage. CRF is a probabilistic graphical model, which has been
applied to sequence labeling and semantic segmentation. Li
et al. [13] combined CNN and CRF and proposed an end-
to-end framework by mean-field approximate inference algo-
rithm for better performance. However, the combination of
CNN and CRF is complicated and required a lot of comput-
ing resources. Our work focuses on proposing a more efficient
framework to utilize the spatial correlations.

3. METHOD

3.1. Motivation and Overview

Patch-level CNNs, which classify every patch indepen-
dently, will generate many wrong isolated probabilities, as de-
picted by the predicted probability map from CNNs in Fig.1.
As shown in the masks, the region of the lesion area is contin-
uous, indicating that the labels of adjacent patches tend to be
consistent. From the perspective of image signals, the wrong
prediction from CNNs is the noise in the probability map. In-
spired by this, we try to apply a filter kernel to remove the
noise. On the other hand, the filter kernel takes advantage of
the label distribution of neighboring patches to reestimate the
output of CNNs. As a consequence, the model considers not
only the texture information but also the labels of neighboring
patches, obtaining a smoother probability distribution.

In this section, we put forward a two-stage framework for
classification of the patches from WSI. Firstly, we trained a
CNN to classify the patches and use the network to extract
probabilities from patches. Then, we filtered the probability
map from the CNN with a filter kernel to get a better analysis
by taking advantage of spatial correlations. An overview of
this framework is illustrated in Fig.1.

3.2. Obtain Probability Map from CNN

In the first part, we utilized the CNN as feature extrac-
tor. Deep CNNs usually consist of several convolutional lay-

ers, max-pooling layers as well as activation functions like
ReLU, Softmax. In fact, CNN can be used as the classifier
directly, but it will distinguish the cancer label of the patch
independently ignoring the label distribution of the neighbor-
ing patches.

3.3. Reestimate with Filter Kernel

For patches from a WSI, we can feed them into the
trained CNN model and get a probability map. The prob-
ability map that patches belong to class r represents as
P (r) = {pi,j |0 <= pi,j <= 1} and r ∈ {0, 1, 2, 3}. Let F (r)

be the filter kernel for class r and the reestimate probability
map ˆP (r) is given as:

ˆP (r) = P (r) ∗ F (r) (1)

From the perspective of each Patchi,j , its probability
ˆpi,j

(r) is:

ˆpi,j
(r) =

K/2∑
n=−K/2

K/2∑
m=−K/2

p
(r)
i+n,j+m × w(r)

n,m (2)

where w(r) is the parameter of filter kernel F (r) and K is the
size of filter kernel, which can be 3 for a grid of 3× 3 kernel
or 5 for a grid of 5× 5 kernel. If the label of Patchi is same
as its neighboring patches, it will get a higher probability. In
contrast, it will get a lower probability when its label differs
from its neighbors.

If we concatenate the probabilities of a patch and its
neighboring patches into a single probability vector as xi,
and let y(r)i ∈ {0, 1} be the label of Patchi from the grid of
patches. The problem can be solved as an optimize problem
for each label as below:

argmin
w(r)

N∑
i=1

log(1 + exp(−y(r)i w(r)Txi)) (3)
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We use logistic regression algorithm as the strategy for pa-
rameter estimating of the filter kernel. LR was chosen as our
fusion strategy owing to its robustness and efficiency against
high-dimensional features and multi-class task.

The probability P (yi = r|xi) that Patchi belong to class
r is given as:

P (yi = r|xi) =
exp(−w(r)Txi)∑R
r=1 exp(−w(r)Txi)

(4)

where R is the number of cancer type.

4. EXPERIMENT

4.1. Dataset and Environment

The proposed method was applied to the dataset from
ICIAR 2018, which consists of 10 high resolution WSIs.
Each WSI has multiple normal, benign, in situ carcinoma
and invasive carcinoma regions and each WSI has a corre-
sponding list of labeled coordinates that enclose benign, in
situ carcinoma and invasive carcinoma regions, and the rest
is marked as normal, as depicted in Fig. 2 [14]. With these
labeled coordinates we can make masks of these WSIs and
extract fixed size patches by sliding a patch window.

The approach we proposed was implemented with keras-
2.0.8 and Tensorflow-1.4.1 in python 3.6 with NVIDIA
GeForce GTX 1080 Ti GPU.

(a) Normal (b) Benign (c) In situ (d) Invasive

Fig. 2. Examples from the dataset

4.2. Implementation Details

We used WSI-3 to WSI-10 for the training dataset and the
rest of the slides for the test dataset. We slid a window of
200 × 200 pixels to get patches from WSI and recorded the
coordinates of the center point of each patch. Before using
these patches as the training dataset, we ran an algorithm to
remove the background patches depending on its histogram,
which is concentrated in a small range. Then we tagged each
patch according to its mask.

The implementation of our proposed algorithm can be di-
vided into two parts.

In the first part, we used VGG16 [6], ResNet50 [7], Incep-
tionV3 [8] and InceptionV4 [9] provided by Keras as feature
extractor. For each coordinate of the center points, we take
patches of 200×200 pixels and then feed them into the CNNs
for training. The training dataset is too small for the model,

and it is easy to get overfitting. So, we fine-tuned the model
weights of the Imagenet-pre-trained CNNs. We used stochas-
tic gradient descent of learning rate 1e-7 and a momentum of
0.01 to optimize the architecture.

Then the second part is a filter algorithm, which is the
Logistic Regression in this experiment. The algorithm takes
the probabilities extracted by the CNN models as the input
features. For each coordinate of the center points, we take a
patch of 600×600 pixels and then cut it into a grid of patches
by 200× 200 pixels. The training dataset was as same as the
first part.

4.3. Result

4.3.1. Better Performance with Spatial Information

Table.1 shows patch-level classification accuracies of the
CNNs on validation dataset as well as the result of filter algo-
rithm base on them. Compared with the output of the CNNs,
the overall accuracies improved by about 10%, suggesting the
probability distribution of a patch is related to its neighboring
patches. Surprisedly, the VGG16 gets better performance on
the baseline than the other networks which is not the same
as their performance on Imagenet dataset [15]. We consider
that the different data scale and the different characteristics of
datasets lead to this phenomenon.

Then we explored the effectiveness of different filter ker-
nel size of k× k, where k ∈ 3, 5, 7. The result is summarized
in Table.1. As the kernel size gets larger, which means the
algorithm can get more spatial information from the neigh-
boring patches, the performance becomes better. However,
the reward is becoming smaller as the kernel getting larger.

Table 1. Patch-level accuracies of different kernel size
baseline 3× 3 5× 5 7× 7

VGG16 [6] 0.7759 0.8657 0.8917 0.9046
ResNet50 [7] 0.7509 0.8759 0.8954 0.9074
InceptionV3 [9] 0.7583 0.8907 0.9074 0.9176
InceptionV4 [16] 0.7454 0.8769 0.8898 0.9028

Furtherly, we implemented our method with ResNet18 [7]
on 2-class classification for tumor and non-tumor and com-
pared it with NCRF [13], which was trained with our dataset.
The result on Table.2 shows that our method achieves higher
patch-level accuracies.

Table 2. Patch-level accuracies on 2-class classification
kernel size baseline NCRF Our method

3× 3 0.8144 0.8220 0.8703
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(a) Origin (b) Ground Truth (c) Predict by ResNet50

(d) Our Method with 3× 3 filter kernel (e) Our Method with 5× 5 filter kernel (f) Our Method with 7× 7 filter kernel

Fig. 3. Predicted probabily maps of A10 from ResNet50 (a) original WSI (b) ground truth annotation (c) probability distribution
from ResNet50 (d) probability distribution from our method with 3×3 kernel (e) probability distribution from our method with
5× 5 kernel (f) probability distribution from our method with 7× 7 kernel

(White) normel benign in situ carcinoma invasive carcinoma background

4.3.2. WSI-level Performance

Finally, we applied our method to WSIs and tested the
trained model on WSI-level classification.

Fig.3 shows the visualization of classification result on a
WSI. Table.3 and Fig.4 show the performance of our method
compared to the baseline of CNNs. With the filter algorithm,
the classification maps get smoother compared to the result
from CNN. As we can see, with the spatial information from
neighboring patches, the algorithm can reduce the isolated re-
sult from the CNNs. The label distribution of each patch is
not conditionally independent. The result also suggested that
the kernel size plays an import part in the classification.

Table 3. WSI-level accuracies of different kernel size
baseline 3× 3 5× 5 7× 7

VGG16 [6] 0.7412 0.7948 0.8103 0.8186
ResNet50 [7] 0.7160 0.7834 0.7986 0.8063
InceptionV3 [9] 0.7000 0.7808 0.8040 0.8098
InceptionV4 [16] 0.6861 0.7737 0.7865 0.7969

5. DISCUSSION

This work focuses on taking advantage of spatial corre-
lations between patches. The CNN can classify the patches
from the WSI, but the result from the CNN will contain
many wrong isolated predicted labels as it ignores the spatial
correlations. Compared to the previous methods without tak-

Fig. 4. WSI-level Accuracy of different kernel

ing advantage of spatial correlations, our framework can get
smoother label maps. Further experiments show that larger
kernel size can achieve better performance in classification
but the reward is becoming smaller as kernel size getting
larger.
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