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ABSTRACT

The automatic pulmonary nodule detection in thoraci-
c computed tomography (CT) scans plays a crucial role in
the early diagnosis of lung cancer. In this paper, we pro-
pose a novel framework with a 3D convolutional network
(ConvNet) for pulmonary nodule detection. To improve the
efficiency and flexibility, we adopt one-stage process with-
out the false positive reduction stage. Specially, the great
challenge of the nodule detection is the recall rate of small
nodules. We propose two methods to solve this issue. First-
ly, we set the classification label by the intersection over
union (IoU) self-normalization, which enables to eliminate
the loss of regression information caused by misleading clas-
sification confidence. Secondly, pulmonary nodules differ in
size, shape and density, leading to large intra-class variations.
We introduce maxout unit to solve this problem. Overall, we
achieve an average FROC score of 0.912 on LUNA16 dataset,
outperforming all other one-stage models as far as we know.

Index Terms— Lung Nodule Detection, Computer-
Aided Detection, Deep Learning, Medical Image Analysis

1. INTRODUCTION

Lung cancer is the deadliest cancer worldwide, and it ac-
counts for approximately 27% of cancer-related deaths in
the United States.[1] The last decade has seen significant
advances in machine learning combined with computer aided
diagnosis (CAD). Compared with manual detection, CAD is
inevitable because computer vision models can quickly scan
everywhere without fatigue and emotions. Recent advances
in deep learning have assisted radiologists in the reading
process and to make arrangement of early treatment.
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Fig. 1. Example IoU self-normalization and classification
confidence of anchor boxes. The yellow crosshair ”+” indi-
cates the center of the anchor box. The yellow dashed boxes
are evenly distributed anchor boxes, and the red solid box rep-
resents the target box. Sf is the stride size of the network.

Traditional nodule detection involved hand-crafted fea-
tures such as form features [2], texture characteristics [3] and
wavelet features [4]. Recently, deep learning-based methods
have been a major trend in this field. Besides, the emergence
of large-scale dataset, LUNA16 [5] facilitated the related re-
search. This detection task is usually divided into two stages:
region proposal generation and false positive reduction. For
the first subtask, we mainly adopt convolutional networks to
generate candidate region proposals. Ding et al.[6] started
their model with an ImageNet pre-trained VGG16 model [7]
and employed Faster R-CNN [8] to generate candidate bound-
ing boxes. In the second stage, more complex classifiers are
used to remove false positive nodules. Zhu et al.[9] proposed
extra false positive reduction classifier by deep 3D dual path
for detection. Dou et al.[10] designed a novel hybrid-loss 3D
ConvNet to improve the lung nodule recognition accuracy.

However, more single shot detectors (SSD) [11] appeared
recently, making the two-stage design a bit redundant. In [12],
Liao et al presented volumetric one-stage convolutional neu-
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Fig. 2. Model overview. Each cuboid in the figure stands for a 4D tensor. ”/2” indicates that downsampling is performed with
a stride of 2. The number at the upper right corner of each tensor indicates the channel number of the feature map. The dense
connected module ”B1” contains 3 dense connected units. The ”B2” and ”B3” contain 6 dense connected units. In addition, the
maximum response output module consists of a convolutional layer and a maxout unit.

ral network (CNN) for 3D object detection with the multi-
instance learning. To improve the efficiency and highlight
variability and flexibility, we adopt a simple one-stage ap-
proach. All computations are completely encapsulated in a
single network. The relevant works included the compari-
son between 2D and 3D convolutional networks. Anirudh et
al.[13] found that multi-level contextual 3D CNN is superior
and more robust than 2D CNN for 3D CT data.

Although the previous results are reassuring, the detection
of small nodules is still relatively challenging due to the in-
tensity, size, and shape dissimilarity among different nodules.
We propose a novel network leveraging 3D ConvNets via IoU
self-normalizaton and maxout unit to improve the recall rate
of small nodules. The main contributions in this work can be
summarized as follows:

• We propose a novel 3D convolutional network with
dense connected modules. It is a single-model and
single-stage network for end-to-end detection.

• We use IoU self-normalization to set classification la-
bels without threshold selection. IoU self-normalization
enables to regress more information of detection boxes.

• We add maxout unit in the classifier to handle large
intra-class variations of pulmonary nodules.

• We modify the classification loss function by incorpo-
rating variant of focal loss to dynamically adjust the
classification weights of each anchor box.

2. METHOD

2.1. Network for Detection

The network consists of 19-layers CNN backbones without
Region Proposal Network (RPN), as shown in Fig. 2. The

dense connected module is used as the basic block of our net-
work. The size of convolution kernel used in the network is 3
× 3 × 3. ReLU [14] is used as the activation function. The
batch normalization [15] operation is performed after each
convolution operation. In the last layer, we design 4 anchors
of the size of 8, 16, 32 and 48, as shown in Fig. 1, which are
based on the distribution of nodule sizes.

2.2. IoU Self-Normalization

In the conventional detection methods, the classification label
value y(Ai) is defined as follows,

y(Ai) =


1, IoU(Ai) > tH

0, IoU(Ai) < tL

−1, otherwise,
(1)

where Ai is the index of an anchor, tH and tL are thresholds
set by hand. An anchor box will be discarded if its IoU is
between tL(0.05) and tH (0.3), which may lose location in-
formation for regression. This mechanism may lead to dif-
ficulties in the detection of small-sized nodules and result in
over-fitting problem.

We innovatively propose an optimization mechanism,
called IoU self-Normalization, to overcome the drawbacks
existed in the conventional methods. The improved classifi-
cation label value y∗(Ai) can be defined as:

y∗(Ai) =
IoU(Ai)

maxIoU(Ai)
, (2)

where maxIoU(Ai) is the maximum IoU value of all anchor
boxes. The classification label value is changed from discrete
to continuous through IoU normalization, which keeps all the
information for regression.
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Fig. 3. Illustration of maxout unit. We consider the output of
our model as 3D deep instances. It is a 3 dimensional prob-
ability map, and will produce a 12 × 12 × 12 × K scoring
feature through a convolution layer. Then, the max pooling
operation extracts the final label predictions.

2.3. Maxout Unit

In order to cope with large intra-class variations of lung nod-
ules, we introduce a maximum response at the output layer
(Fig. 3). This method allows the network to respond differ-
ently to various types of nodules and neglects the interaction
between nodules. Firstly, we map each point of the last fea-
ture vector to a K-dimensional vector. Then we take the maxi-
mum value in the fourth dimension of the K-dimensional vec-
tor as the final classification output. This mechanism can be
regarded as the maxout activation function proposed in [16].

2.4. Loss Function

We use the weighted smooth L1 loss function [17] for the
regression loss Lreg(t, t∗) as follows,

Lreg(t, t
∗) =

1

Nreg

∑
iεSA

y(Ai)× smoothL1
(t− t∗),

t = (
x− xa
da

,
y − ya
da

,
z − za
da

, log(
d

da
)),

t∗ = (
x∗ − xa
da

,
y∗ − ya
da

,
z∗ − za
da

, log(
d∗

da
)).

(3)

Here, t and t∗ are the offset of the predicted bounding box
and ground truth bounding box respectively. (xa, ya, za, da)
is the anchor box and the radius of the box. (x, y, z, d) and
(x∗, y∗, z∗, d∗) are the predicted and ground truth coordinates
and the radius of nodule respectively. SA is the collection of
all anchor boxes. Nreg is normalization factor, which is set as∑
iεSA

y(Ai).
To address class imbalance by down-weighting easy ex-

amples, we incorporate the focal loss function [18] into our
binary classification loss Lcls, defined as follows,

Lcls =
1

Ncls

∑
iεSA

−(1− pit)
γ log(pit),

pit = y(Ai)p
i + (1− y(Ai))(1− pi),

(4)

where pi is the predicted probability for the current anchor i
being a nodule; y(Ai) calculated with our IoU normalization

method is set by equation 2. Ncls is Normalization factor,
which is set as

∑
iεSA

y(Ai) . γ is the focusing parameter
which smoothly adjusts the rate at which easy examples are
weakly weighted, and we set γ = 2 in experiments.

We sum up the regression loss and the classification loss
to define the total loss as,

L = Lcls + λLreg, (5)

where λ is a balance parameter and set as 1 in experiments.

3. EXPERIMENT

3.1. Dataset

LUNA16 dataset consists of 888 low-dose CTs with total of
1186 labeled pulmonary nodules. It is divided into 10 folders.
We use nine folders of data for training and the rest for testing.
We first clip the raw data into the range of [-1000, 600], then
we transform the cropped data to [-1, 1] for preprocessing.
Due to the GPU memory limitation, the raw image volume is
too large to fed into the 3D CNN directly. We crop train data
to a cubic patch size of 96 × 96 × 96 × 1(depth × height ×
width × channel). Moreover, the positive patch contains one
lung nodule at least.

3.2. Implementation

We conduct 10-fold cross validation and data randomisation
over all data. The Adam [19] optimization method is utilized
for a total of 80,000 training iterations. The batch size is set to
18. The learning rate is decayed by 0.1 from 0.001 every 100
epochs of training data. All experiments were implemented
with Tensorflow framework [20] on an Nvidia Titan X GPU.

3.3. Results

According to the LUNA16 standard, we evaluate the nodule
detection performance by the free-Response Receiver Oper-
ating Characteristic (FROC) analysis. Concretely, the FROC-
score is defined as the average of the sensitivity at seven pre-
defined false positives (FPs) rates: 0.125, 0.25, 0.5, 1, 2, 4,
and 8 FPs per scan.

Our best performance achieves an average FROC score of
0.912, which is visualized in Fig. 4. We can see from the
FROC curves that the performance of the D-Net+CL model
has been improved after incorporating focal loss, IoU self-
normalization, and maxout unit respectively.

The focal loss, a modulating term to the cross entropy
loss, focus learning on hard negative examples and naturally
handles the class imbalance faced by our one-stage detector.
In addition, D-Net+FL+IoU-norm increases the FROC scores
a lot comparing to D-Net+FL at the false positive rate as 1/8
FPs, which indicates that IoU Self-normalization is very ef-
fective in reducing the leakage rate under the condition of low
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System 0.125 0.25 0.5 1 2 4 8 Sensitivity Candidates/scan
M5L 0.601 0.667 0.722 0.751 0.788 0.823 0.843 0.768 22.2
ISICA 0.652 0.723 0.864 0.924 0.942 0.942 0.942 0.856 335.9
iDST-VC 0.755 0.821 0.887 0.918 0.968 0.976 0.987 0.897 -
CASED 0.781 0.845 0.867 0.902 0.921 0.956 0.978 0.887 -
Zhu et al.[9] 0.690 0.780 0.830 0.860 0.900 0.913 0.923 0.842 -
Dou et al.[10] 0.659 0.745 0.819 0.865 0.906 0.933 0.946 0.839 -
Ding et al.[6] 0.750 0.854 0.882 0.928 0.931 0.936 0.946 0.890 15.0
Ours(K=10) 0.789 0.847 0.874 0.939 0.964 0.977 0.991 0.912 13.8

Table 1. Comparison of performance among our system, other submitted one-stage and one-model approaches (Line 4 and
Line 5) on the LUNA16 Challenge and published papers.

Fig. 4. Sensitivity (Recall) rate with respect to FPs. The solid
line is the interpolated FROC beads on the prediction. The
dash lines are lower bound and upper bound FROC for the
bootstrapped FROC performance. D-Net: our model with
dense connected modules; CL: binary cross entropy (BCE)
loss; FL: focal loss; IoU-norm: IoU Self-normalization; MO:
maxout unit; K: dimension of maxout unit.

error detection. D-Net+FL+IoU-norm+MO(K=5/10/15/20)
shows that the results have different improvements with the
maxout unit, and when K=10, FROC achieves the best.

We present the comparison among top results of the one-
stage paradigm of the leaderboard in LUNA16 Challenge1

and other submitted papers for equality, which is shown in Ta-
ble 1. We have achieved the highest score of average sensitiv-
ity and the fewest candidates per scan compared with other al-
gorithms. More specifically, our model has the highest recall
rate at 1/8 FPs, which indicates that our model has stronger
ability to detect nodules with less False positives.

3.4. Discussion

We believe that the improvement of performance is mainly
due to the improvement of the recall rate of small nodules.
We randomly choose nodules from testing fold and visualize
our detection results in Fig. 5. The true positives all have

1https://luna16.grand-challenge.org/results/

Fig. 5. True positives (the first row), false positives (the sec-
ond row), and false negatives at 2 FPs (the last row). The
numbers above stand for the predicted probabilities of the n-
odule. The yellow and red rectangle boxes are our detected
nodules. All are the slice of center z.

high probabilities, while the false positives have low proba-
bilities. At 2 FPs, only 5 nodules are missed throughout the
test set. And they are all very small, even experienced doctors
cannot reach consensuses in some cases. Therefore, under the
condition of low false positives, small-sized nodules are sus-
ceptible to false negatives. Yet, the recall rate of our method
is optimal in the case of low false positives, indicating that our
model has a higher detection performance for small nodules.

4. CONCLUSION

This paper proposes a simple and highly effective lung nod-
ule detection model. We utilize the normalized IoU values as
classification labels instead of the binary classification confi-
dence, which empowers more bounding box regression. We
add maxout unit in the classifier to handle large intra-class
variations of pulmonary nodules. In addition, the focal loss
is incorporated to effectively tackle the hard/easy sample im-
balance problem. Quantitative and qualitative results demon-
strate that our contributions lead our network to achieve the
state-of-the-art. We hope that our method is extensible to fu-
ture works on other object detection tasks, and beyond.
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