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ABSTRACT

In this paper, we propose Rectified Local Phase Unit
(ReLPU), which is an efficient and trainable convolutional
layer that utilizes phase information computed locally in a
window for every pixel location of the input image. The
ReLPU layer is based on applying the Rectified Linear Unit
(ReLU) activation function on the local phase information
extracted by computing the local Fourier transform of the
input image at multiple low frequency points. The ReLPU
layer, when used at the top of the segmentation network U-
Net, is observed to improve the performance of the baseline
U-Net model. We demonstrate this using the task of segment-
ing blood vessels in fundus images of two standard datasets,
DRIVE and STARE, achieving state-of-the-art results. An
important feature of the ReLPU layer is that it is trainable
which allows it to choose the best frequency points for com-
puting local Fourier transform and to selectively give more
weight to them during training.

Index Terms— Convolutional neural network, phase in-
formation, fundus image segmentation.

1. INTRODUCTION

Over the past few years, with the availability of large-scale
datasets and computation power, deep learning has achieved
impressive results in a wide range of applications in the fields
of computer vision, artificial intelligence, and image process-
ing. In fact, in a majority of the computer vision problems like
image classification, semantic segmentation, object detection
and many more, development in neural network architectures
like Convolutional Neural Networks (CNNs) have achieved
state-of-the-art results. Each year, new training methods and
network architectures are being introduced with the goal of
developing models that can represent the underlying data for
a given task in the best possible way.

In this paper, we propose a phase-based learnable con-
volutional layer named Rectified Local Phase Unit (ReLPU).
The ReLPU layer when used at the top (just after the input
layer) of the segmentation network U-Net, such that the input

S. Kumawat was supported by TCS Research Fellowship and S. Raman
was supported by a SERB Core Research Grant.

to the network is the local phase information of the input im-
ages, is observed to significantly improve the performance of
the baseline U-Net model. We demonstrate this using the task
of segmenting blood vessels in the fundus images of two stan-
dard datasets, DRIVE and STARE, achieving state-of-the-art
results on both. Our results show that the local phase infor-
mation of the input image provides a better representation ca-
pability than the spatial information that is generally used by
most CNNs. The ReLPU layer is based on applying the Rec-
tified Linear Unit (ReLU) activation function on the phase in-
formation of the local Fourier transform at multiple low fre-
quency points of the input. The ReLPU layer is trainable,
which allows it to choose the optimal frequency points and to
selectively give more weight to them during training.

2. RELATED WORK

The Short Term Fourier Transform (STFT) in 2D space was
first studied by Hinman et al. in [1] as an efficient tool for im-
age encoding. The 2D STFT has three features which made
it an attractive technique for image coding. They are: its ex-
cellent energy compaction, its ability to decorrelate the input
features, and that it is free of the “blocking effects” [1]. Nat-
ural images are often composed of objects with sharp edge
features. It has been observed that Fourier phase information
is more important in accurately representing these edge fea-
tures than the magnitude information. Since 2D STFT is sim-
ply a windowed Fourier transform, the same property applies.
Ojansivu and Heikkilä proposed the Local Phase Quantization
(LPQ) operator for blur invariant texture analysis [2]. The
LPQ operator is based on the binary encoding of the phase
information of the local Fourier transform at low frequency
points. Local phase from 1D STFT has been explored re-
cently in deep neural networks such as Fully Complex-valued
Deep Neural Network (FCDNN) in [3] for speech processing.
To the best of our knowledge, the local phase information ex-
tracted from 2D STFT has not been studied in the domain of
CNNs for image processing and computer vision applications.

3. METHOD

The ReLPU layer utilizes the phase information computed lo-
cally in a window at every position of the input image. It

1209978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



29/10/2018 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

2D STFT (a = 1/3) &
 local phase extraction
 

2D STFT (a = 1/5) &
 local phase extraction

2D STFT (a = 1/7) &
 local phase extraction

Depthwise
 Concatenation ReLU  conv(c2, 24x1x1)

Layer 2 Layer 3 Layer 4

 conv(1, c1x1x1)

24 x h x w 24 x h x w

8 x h x w 1 x h x w 

c2 x h x wc1 x h x w 

previous
 layer

 

next
layer

Layer 1

Fig. 1: The architecture of the proposed ReLPU layer.

is a four-layer alternative representation of the standard 2D
convolutional layer. Fig. 1 illustrates the architecture of the
ReLPU layer. The first layer is the standard 1 × 1 trainable
convolution layer containing a single filter of depth c1 which
takes an input image of size c1×h×w from the previous layer
and converts it into a single channel output of size 1× h×w,
where c1 is the number of channels and h × w is the spatial
dimension of the image. If the image is a gray-scale image,
then this layer is optional. Let f(x) be the output of the first
layer. In further discussion, we will use the term “tensor” for
the inputs and the outputs of the intermediate layers.

The second layer extracts the local phase spectra of f(x)
by computing the 2D STFT in the local M×M neighborhood
Nx of each position x of the input f(x) using Equation (1).

F (u, x) =
∑

y∈Nx

f(x− y) exp−j2πuT y (1)

Here, u is a 2D frequency variable and j =
√
−1. Using vec-

tor notation, we can rewrite Equation (1) as shown in Equa-
tion (2).

F (u, x) = wTu fx (2)

Here, wu is the basis vector of the 2D STFT at frequency
u and fx is a vector containing all positions from the neigh-
borhood Nx. Note that, due to the separability of the basis
functions, 2D STFT can be efficiently computed for all the
positions x in f(x) by using simple 1D convolutions for the
rows and the columns, successively.
In this work, four 2D frequency variables are considered -
u1 = [a, 0]T ,u2 = [0, a]T ,u3 = [a, a]T , and u4 = [a,−a]T ,
where a is a scalar such that a = 1/M . Let

W = [<{wu1
,wu2

,wu3
,wu4
},={wu1

,wu2
,wu3

,wu4
}]T

(3)
Here, W is the 8 ×M2 transformation matrix containing all
the basis vectors corresponding to the four 2D frequency vari-
ables. <{·} and ={·} return the real and the imaginary parts
of a complex number, respectively. Hence, from Equation (2)

and (3) the vector form of the 2D STFT for all the four fre-
quencies u1, u2, u3 and u4 can be written as shown in Equa-
tion (4).

Fx = Wfx (4)

Note that, Fx is computed for all positions x of the input f(x),
resulting in an output with size 8× h× w.

Note that in the second layer in Fig. 1, the phase is ex-
tracted by computing 2D STFT in parallel over multiple
neighborhood sizes (M = 3, 5, 7) and frequency points
(a = 1/3, 1/5, 1/7) and then concatenated channel-wise.
The basic idea behind this approach is to let the network learn
on its own what neighborhood sizes and frequency points to
choose from and give more weight to the selected ones in the
fourth layer which is a trainable layer.

The third layer is the ReLU activation layer which takes
as input a tensor of size 24×h×w from the second layer and
outputs a tensor of the same size.

The fourth layer is the standard trainable 1 × 1 convolu-
tional layer containing c2 filters, each one of them has a depth
equal to 24 which takes as input a tensor of size 24 × h × w
and outputs a tensor of size c2 × h × w. This layer can be
interpreted as c2 linear combinations of the channels of the
input. Note that it is this layer that gets learned during the
training phase of the CNN.

Parameter analysis of the ReLPU layer. The ReLPU layer
uses significantly less learnable parameters when compared
to the standard convolutional layer with a particular size of
the filters and a particular number of input-output channels.
Consider a standard convolutional layer with c1 input and c2
output channels. Let p× p be the size of the filters. Thus, the
total number of learnable parameters in a standard convolu-
tional layer is c1 · p · p · c2. An ReLPU layer with c1 input
channels and c2 output channels consists of just c2 ·24+c1 ·1
learnable parameters. Thus, the ratio of the number of learn-
able parameters in a standard convolutional layer and the
ReLPU layer is given by:
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No. of params. in CNN layer
No. of params. in ReLPU layer

=
c1 · p · p · c2
c2 · 24 + c1 · 1

For simplicity, assume c2 = c1 and c1 = 25. This reduces the
above ratio to p2. Thus, for a filter of size 3 × 3 in the stan-
dard convolutional layer, the ReLPU layer uses nine times
less learnable filters. Therefore, numerically, ReLPU layer
saves atleast 9×, 25×, 49×, 81×, 121×, and 169× parame-
ters during learning for 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11,
and 13× 13 convolutional filters, respectively.

Statistical advantages of the ReLPU layer. An important
advantage of using the ReLPU layer is that it decorrelates the
input features due to its use of the 2D STFT which is known to
have such a property [1]. Recent works on regularizing CNNs
such as [4, 5] have shown that the decorrelation of features
enables us to achieve better performance.

4. EXPERIMENTS

4.1. Datasets

We test the proposed ReLPU layer on the task of segmenting
blood vessels in fundus images. For this, we use two standard
publicly available datasets of fundus images: DRIVE [6] and
STARE [7]. The DRIVE dataset consists of 40 eye-fundus
color images taken with a Canon CR5 non-mydriatic 3CCD
camera with a 45◦ field of view (FOV), 8 bits per color chan-
nel, and at a resolution of 565 × 584 pixels. These images
are further partitioned into a training and a testing set with
20 images in each set. Each of the images in the training set
have a manual annotation associated with it while two man-
ual annotations per image are available for the test images.
The STARE dataset consists of 20 fundus color images cap-
tured with a TopCon TRV-50 fundus camera with 35◦ FOV,
8 bits per color channel, and at a resolution of 700 × 605
pixels. Each image is manually annotated by two observers.
Following [8, 9], we use the annotations provided by the first
observer as the ground truth. FOV masks from [8] are used
as they do not come with the original dataset. As the dataset
does not come with any predefined training and testing sets,
following [10], the evaluation is performed using leave one-
out cross validation.

4.2. Network Architecture

We use U-Net architecture as the baseline [11]. The pro-
posed Phase U-Net architecture is illustrated in Fig. 2. The
difference between the baseline U-Net architecture and the
proposed Phase U-Net architecture is that the first 3×3 convo-
lutional layer in U-Net (just after the input layer) is replaced
with the ReLPU layer (with output channel of size 512) in the
Phase U-Net. The rest of the network is same consisting of a
contracting path and an expansive path with skip connections.
It consists of repeated application of the standard 3 × 3 un-

padded convolutions, each followed by the ReLU activation
function. For downsampling, 2 × 2 max pooling with stride
2 is used. After each downsampling step, the number of fea-
ture channels are doubled. Every step in the expansive path
consists of an upsampling of the feature map followed by a
2× 2 convolution that halves the number of feature channels,
a concatenation with the corresponding feature map from the
contracting path, and two standard 3 × 3 convolutional lay-
ers, each followed by the ReLU activation function. The final
layer is a 1 × 1 convolution followed by the softmax activa-
tion function which is used to map each 32 component feature
vector to the desired number of classes which is 2 in our case.
In total, the network has 9 convolutional layers with 1 ReLPU
layer.
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Fig. 2: The proposed phase U-Net architecture for structured
prediction designed to segment retinal blood vessels from
given fundus image.

AUC ROC

Method DRIVE STARE

Soares et al. [12] 96.14 96.71
Azzopardi et al. [9] 96.14 95.63
Osareh et al. [13] 96.50 -
Roychowdhury et al. [14] 96.70 96.88
Fraz et al. [15] 97.47 97.68
Qiaoliang et al. [16] 97.38 98.79
Melinscak et al. [17] 97.49 -
Liskowski et al. [10] 97.90 99.28
Dasgupta et al. [18] 97.44 -
Yan et al. [19] 97.52 98.01
Wu et al. [20] 98.07 -
Zhang et al. [21] 97.99 98.82

U-Net [11] (baseline) 97.90 98.92
Phase U-Net (ours) 98.31 99.30

Table 1: Performance results compared to other state-of-the-
art methods on DRIVE and STARE datasets in terms of area
under the ROC curve.

4.3. Training

We first pre-process the images by converting them to the
gray-scale format and normalize them by subtracting the
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mean and dividing by the standard deviation of its elements
(independently in the R, G, and B channels). Next, contrast
limited adaptive histogram equalization (CLAHE) [22] and
gamma adjustment are applied on the normalized images. Fi-
nally, the intensity values are scaled to have a minimum value
of 0 and a maximum value of 1 to obtain the pre-processed
images.

The training of the proposed model is performed on sub-
images (patches) of the pre-processed full images. A total of
9500 patches, each of dimension 48 × 48, are obtained by
randomly selecting their centers inside the full image. Fur-
ther, the patches partially or completely outside the Field Of
View (FOV) are selected. In this way, the model learns how to
discriminate the FOV border from the blood vessels. During
training, the patches were randomly flipped, rotated, shifted,
and applied noise.

Our models are implemented using Keras with Tensor-
Flow as background on a system with i7-8700 processor,
32 Gb RAM, and a single Nvidia Titan Xp 12 Gb GPU.
It was optimized using Stochastic Gradient Descent (SGD)
optimizer with a momentum value of 0.9, crossentropy as
loss, and a batch size (of patches) of 32. All the weights
are initialized with the orthogonal initializer. We start with a
learning rate of 0.01 and decrease it to 0.0001 over the course
of training. We train the proposed network on the DRIVE
dataset from scratch and use the obtained trained model to do
transfer learning on the STARE dataset.

4.4. Results

Table 1 presents the quantitative comparison of the proposed
network with the previous works. Following [10], we use area
under the ROC curve as the metric to evaluate our model.
Note that the proposed Phase U-Net architecture significantly
improves the accuracy of the baseline U-Net architecture, thus
proving that the local phase information extracted from the
input image has better representation capability than just the
spatial information which is used by the baseline U-Net archi-
tecture. Fig. 3 shows the visualizations of the segmented map
that is output by our network along with the corresponding in-
put image and the ground truth map. We observe qualitatively
that the predicted segmented map appears very adjacent to the
ground truth map.

5. CONCLUSION

This work explores the application of the local phase infor-
mation in CNNs especially in medical image segmentation
networks such as U-Net. Specifically, we propose ReLPU, an
efficient and trainable local phase-base convolutional layer.
The ReLPU layer when used at the top (just after the input
layer) of the segmentation network U-Net such that the input
to the network is the local phase information (rectified) of the
input images, significantly improves the performance of the

(a)

(b)

(c)

(d)

Fig. 3: Visualization of the prediction made by our pro-
posed model on two samples randomly taken from the DRIVE
dataset: (a) Original images, (b) Pre-processed images, (c)
Corresponding ground truths, and (d) Segmented outputs.

baseline U-Net model. We show this on the task of segment-
ing blood vessels in fundus images of two standard datasets,
DRIVE and STARE, achieving state-of-the-art results. Future
work could involve more analysis of the ReLPU layer in or-
der to improve its performance and applying it to applications
and scenario where it can be useful.
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