
AUTOMATIC SEGMENTATION OF OPTIC DISC USING AFFINE SNAKES IN GRADIENT
VECTOR FIELD

Sidhartha Dey ?, Kapil Tahiliani ?, J. R. Harish Kumar ? †, A. K. Pediredla �, Chandra Sekhar Seelamantula †

? Department of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal, India
† Department of Electrical Engineering, Indian Institute of Science, Bangalore, India
� Department of Electrical and Computer Engineering, Rice University, Houston, USA

E-mails:{sidhartha.dey1996, tahilianikapil1995}@gmail.com, {harishj, chandrasekhar}@iisc.ac.in,
aditya.eee.nitw@gmail.com

ABSTRACT

The optic disc is one of the prominent features of a retinal
fundus image, and its segmentation is a critical component in
automated retinal screening systems for ophthalmic anoma-
lies, such as diabetic retinopathy and glaucoma. In this pa-
per, we propose a novel method for optic disc segmentation
using affine snakes, where the snake evolves using an affine
transformation and requires a priori knowledge of the desired
object shape. We determine the affine transformation parame-
ters by first computing a force field on the image and then de-
forming the snake till the net force on the snake is zero. The
affine snakes technique excels in its speed of convergence.
This is attributed to the fact that only six parameters require
optimization, the six parameters being the horizontal and ver-
tical scaling, shearing and translation components of an affine
transformation. Localization of the optic disc is done using
normalized cross-correlation and segmentation is done using
the affine snakes technique. This technique is tested on pub-
licly available fundus image datasets, such as IDRiD, Drishti-
GS, RIM-ONE, DRIONS-DB, and Messidor, with Dice In-
dices of 0.943, 0.958, 0.933, 0.913, and 0.912, respectively.

Index Terms— Affine snakes, optic disc, segmentation,
affine transformation, gradient vector field

1. INTRODUCTION

The optic disc (OD), also known as the optic nerve head, is
the area of the retina where the optic nerve leaves the eye. As
it does not contain any sensory receptors, it is called the blind
spot in the eye. Physical appearance of the OD include its
shape, which is approximately circular, and its color, which
ranges from orange to bright yellow to even whitish. Op-
tic disc detection/localization and segmentation is a crucial
component in retinal analysis [1], [2]. It can help in locating
the fovea which is determined to be a fixed distance from the
OD centre, segmenting blood vessels using the OD as a seed
point, removing or suppressing the OD in order to better lo-

(a) (b) (c)

Fig. 1. [Color online] Optic disc in a (a) cropped fundus im-
age; (b) red channel image; (c) GVF image

cate retinal exudates, and monitoring changes in the appear-
ance and morphology of the OD, including the cup-to-disc
ratio examination, in order to effectively diagnose glaucoma.

1.1. Related Work

Over the years, numerous state-of-the-art techniques have
been proposed, all varying in theoretical modelling and ap-
proach. Discussing some of the state-of-the-art techniques
which have emerged in the last few decades, we start with
Morales et al., who made use of principal component analysis
(PCA) and morphological operations as preprocessing steps
to detect the centroid of the OD followed by watershed trans-
formations and circle fitting technique to segment the OD
boundary [3]. Aquino et al. approximated the OD boundary
using mathematical morphology, edge detection techniques
and circular Hough transform (CHT) [2]. In a recent paper,
Zahoor et al. made use of morphological operations and
CHT as preprocessing and OD localization techniques, re-
spectively, and implemented polar transform-based adaptive
thresholding to segment the OD [4]. Cheng et al. proposed a
superpixel approach in which histogram analysis and centre
surround statistics were used to classify the OD [5]. Walter
et al. automated OD detection using morphological filtering

1204978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



techniques and segmentation using the watershed transfor-
mation [6]. Dashtbozorg et al. introduced a sliding-band
filter (SBF) for the segmentation of OD [7]. Sigut et al. used
retinal vessels information and boundary approximation to
localize and segment the OD, respectively [8]. Lowell et al.
used a modified version of Hu’s circular deformable active
contour model [9], incorporating an elliptical global model,
to segment the OD [10]. Joshi et al. modified the region-
based active contour model and traditional Chan-Vese model
[11] by incorporating local image information around points
of interest [12]. Kumar et al. defined a local contrast func-
tion based active disc model which was then minimized to
find the OD boundary [13]. Recently, methods have made
use of machine learning methods, such as those proposed by
Sevastopolsky [14] and Zilly et al. [15]. Sevastopolsky used
a convolution neural network (CNN) based on U-Net [16],
which take an input image and produces an output proba-
bility map, as the core of the method with contrast limited
adaptive histogram equalization (CLAHE) as a preprocessing
step [14]. Zilly et al. proposed an ensemble learning method
inspired by CNNs and made use of boosting and entropy
sampling to improve the training of the network [15].

1.2. Our Contribution

In this paper, we propose an automated method of OD seg-
mentation using affine snakes in a gradient vector field (GVF).
For the formulation of affine snakes in a GVF, we drew inspi-
ration from the unified approach of snakuscules and ovuscules
by Pediredla et al. [17]. In their work, they too evolved the
snakuscule/ovuscule through an affine transformation. How-
ever, they derive the partial derivatives with respect to a nor-
malized contrast function. This is followed by the initial-
ization of the active contour which then undergoes an affine
transformation to give the final segmentation result. Normal-
ized cross-correlation technique is used for the automatic lo-
calization of the OD [18]. The proposed snake features only
six degrees-of-freedom, thereby enabling it to be computed
faster than state-of-the-art methods.

2. PROPOSED METHODOLOGY

The method proposed proceeds as follows: detect/localize the
OD and determine the centre coordinates, crop out the OD
from the fundus image using the centre coordinates and a pri-
ori knowledge of the size (an approximation), calculate the
GVF from the red channel of the OD and finally compute the
affine transform using the optimized parameters calculated in
Subsection 2.3. The affine snakes algorithm functions on the
assumption that the initial contour can be mapped to the fi-
nal contour by an affine transformation. As an affine trans-
form contains six, free parameters, we need to solve for six
variables, which we do using gradient descent technique. By
calculating the partial derivatives and updating the affine pa-

Fig. 2. [Color online] Figures in first three rows showing good
segmentation results. Figures in fourth row show failed seg-
mentation.

rameters, the snake evolves to obtain the final segmentation.
However, initialization of the contour is still imperative and
so, before using affine snakes for OD segmentation, we first
localize the OD using normalized cross-correlation technique
[18] and then proceed with affine snakes in GVF.

2.1. The Gradient Vector Field (GVF)

The GVF forms part of the foundation of the algorithm. Pro-
posed by Xu and Prince [19], the GVF offers a larger capture
range and can force the snake into concavities better than a
conventional vector field. Effectively, the GVF acts as a force
which moves the snake in 6-D space (six parameters) as the
horizontal and vertical vector field components are what in-
fluence the values of the partial derivatives calculated in Sub-
section 2.3. It is important that the vector field is present
wherever in the image the snake may be initialized to prevent
stagnation of the snake. This requirement makes the GVF
the ideal choice for the algorithm and so is calculated, using
equations (1) for the red channel of the cropped OD after pre-
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processing, as shown in Fig. 1. The red channel is chosen as
the OD boundary is the most prominent in this channel, which
then gives rise to an accurate GVF. The GVF defined by [19]
is a vector field v(x, y) = [u(x, y) v(x, y)] that minimizes the
following cost:

ε =

∫∫
|∇f |2|v −∇f |2︸ ︷︷ ︸

SE

+ µ(ux
2 + uy

2 + vx
2 + vy

2)︸ ︷︷ ︸
Regularization

dx dy,

(1)

where SE represents the squared error loss functional that pe-
nalizes the vector field for deviating from the gradient image
∇f(x, y). ux, uy , vx, vy represent the partial derivatives of
horizontal and vertical components of the vector field in x and
y directions. The regularization term forces the vector field to
be smooth. The squared error loss functional and regulariza-
tion term are combined after weighting with |∇f |2 and µ, re-
spectively. This combination will ensure that the vector field
is close to gradient image when the gradient values are strong
and the vector field is continuous in the remaining cases. The
regularization parameter µ governs the effect of smoothing
and should be set according to the amount of noise present in
the image (more noise requires larger µ value). Minimization
of the energy function defined in (1) results in a GVF that is
directed to the nearest edge.

2.2. Affine Snakes

The initial contour is defined as r(t) = (x(t), y(t)), where t ∈
C represents the collection of points. For C = R, (x(t), y(t))
represents a continuous set of points, and for C = Z, the
shape consists of a discrete set of points. We assume that
r(t) is in the counter-clockwise direction. The shape of the
contour after an affine transformation is given by:

R(t) =

(
X(t)
Y (t)

)
=

(
A B
C D

)(
x(t)
y(t)

)
+

(
xc

yc

)
(2)

The optimal values of parameters A,B,C,D, xc, and yc
achieve the final segmentation.

2.3. Parameter Optimization

The partial derivatives dA,dB, dC, dD,dxc, and dyc usher
the snake towards the object boundaries. The role played by
each of the parameters is examined and the corresponding dif-
ferentials are formulated as a result. We perform an inverse
affine transformation to vector field v such that the template
remains in its initial configuration. The transformed vector
field is represented as V. This results in the following equal-
ity:

V(r(t)) = v(R(t)) (3)

Table 1. Segmentation performance of the proposed method

Dataset JI
1 DI

2 SE
3 SP

4 AT
5 (s)

IDRiD 0.896 0.943 0.923 0.999 3.635
Drishti-GS 0.921 0.958 0.932 0.999 2.026
RIM-ONE 0.880 0.933 0.953 0.961 1.472
Messidor 0.857 0.912 0.924 0.976 1.020
DRIONS-DB 0.850 0.913 0.919 0.997 0.410

1 Jaccard Index 2 Dice Index 3 Sensitivity 4 Specificity
5 Average run-time

Parameter A scales the snake in x-direction. Hence, the hori-
zontal component of the vector field will affect this parameter.

dA =

∮
r

dr(t)× (Vx(r(t)), 0).k

⇒ dA =

∮
R

dr(t)× (vx(R(t)), 0).k

=

∮
R

vx(R(t))dy (4)

where k is the unit vector along the z-axis. Parameter B
shears the snake in the horizontal direction. Hence, its par-
tial derivative is calculated as follows:

dB = −
∮
R

dr(t) · (vx(R(t)), 0)

= −
∮
R

vx(R(t))dx (5)

Similarly, C and D are given by:

dC =

∮
R

dr(t) · (0, vy(R(t)))

=

∮
R

vy(R(t))dy (6)

dD = −
∮
R

dr(t)× (0, vy(R(t))).k

= −
∮
R

vy(R(t))dx (7)

Here, C shears the snake in the vertical direction and,
analogous to A, D scales the snake in the vertical direction.
Hence, they are both affected by the vertical component of the
vector field. The differentials, with respect to the centre of the
affine snake (xc, yc), are independent of the snake orientation
and are instead dependent only on the net magnitude evolving
the snake. Hence,

dxc =

∮
R

vx(R(t))d‖r(t)‖ (8)

dyc =

∮
R

vy(R(t))d‖r(t)‖ (9)
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Table 2. Performance comparison (DI ) with state-of-the-art techniques.
Method IDRiD (54) RIM-ONE (169) Drions-DB (110) Drishti-GS (50) Messidor (1200)
Zahoor et al. [4] – 0.8491 0.9378 – 0.9039
Cheng et al. [5] – – – – 0.933
Aquino et al. [2] – – – – 0.92
Joshi et al. [12][20] – – – 0.96 –
Kumar et al. [13] – – 0.8380 0.9077 0.8456
Walter et al. [6] – – 0.6813 – –
Morales et al. [3] – – 0.9084 – 0.8950
Dashtbozorg et al. [7] – – – – 0.9373
Zilly et al. [15] – 0.942 – 0.973 0.947
Sigut et al. [8] – – – – 0.954
Sevastopolsky [14] – 0.95 0.94 – –
Proposed method 0.94357 0.93308 0.91316 0.95868 0.91257

Once the partial derivatives are calculated, the affine parame-
ters are updated by the following equation:

Qn+1 = Qn + γdQ (10)

where Q is a placeholder for A,B,C,D, xc or yc and γ is
the learning rate. After the affine parameters are updated, the
contour is evolved using (2). The partial derivatives are re-
calculated and the process continues until the effect of the
force field is minimized. The result is the optimal parameters
for the affine snake.

3. EXPERIMENTAL RESULTS

An ImageJ [21] plugin was created and run as a batch pro-
cess on publicly available fundus image datasets [22], [20],
[23], [24], [25], and [26]. The segmentation results of the
cropped, fundus images from the datasets are shown in Fig.
2. The failures in the last row of Fig. 2 are attributed to
the lack of variation in colour causing low visibility of the
OD, which becomes even more apparent in the red channel.
The last image is the result of stronger boundaries lying away
from the OD boundary. The Jaccard index (JI ), Dice index
(DI ), sensitivity (SE), specificity (SP ), and average run-time
(AT ) were used to measure the performance of the proposed
technique. As [25] and [24] had multiple experts prepare the
ground truth reference images, we show the mean of the simi-
larity scores. TheAT of the algorithm is directly proportional
to the resolution of the images, with more time required to
compute the GVF of higher resolution images. The perfor-
mance of the proposed algorithm is compared with the exist-
ing state-of-the-art techniques as shown in Table 2. The re-
sults of the state-of-the-art techniques were taken from publi-
cations cited in the “Method” column. From these results, we
see that the affine snakes performs quite competitively with
and surpasses most methods listed. Also when comparing the
performance over multiple datasets, we see more consistency
with affine snakes compared to other methods. For example,

although [4] performs better than affine snakes on the Drions-
DB dataset, the difference in performance when comparing
other datasets, like RIM-ONE, sees affine snakes performing
better and more consistently across different datasets. Hence,
affine snakes is more reliable to use on different datasets.
While affine snakes falls short compared to learning tech-
niques like [14] and [15], the hardware utilized in them, an
NVIDIA GRID Kepler GK104 GPU and Intel Xeon E5-2670
CPU [14] and a 2.66 GHz quad core CPU [15], is more so-
phisticated and not as easily accessible compared to the Intel
i5, 4th generation CPU used to implement the proposed algo-
rithm. While [14] proclaims a prediction time of 0.1s on av-
erage, the prediction time for [15] is 5.3s on average, which
is significantly greater than the affine snakes average run-time
for any dataset. Also, taking into account training and testing
time for learning methods, affine snakes is faster to calibrate
and execute with minimal “training” time as it processes each
image with only basic a priori shape knowledge.

4. CONCLUSIONS

Optic disc segmentation is an important part of analyzing reti-
nal images and automating this process allows mass process-
ing of countless fundus images effortlessly. In this paper,
we present a novel technique for optic disc segmentation us-
ing affine snakes in GVF. While this technique shows great
promise, with similarity indices of 0.9+, we feel it can be re-
fined even further to become one of the best non-learning seg-
mentation techniques which requires minimal hardware and
can even run on smart phones, an intended target platform.
Future work will be to improve the accuracy of the proposed
method. From our technique, the time-consuming or rate-
limiting step is the GVF calculation and so ways to reduce
this computation time will also be looked into. Further efforts
include formalizing the affine snakes framework and testing
it in hospitals to assist medical professionals.
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