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ABSTRACT

In this article, detection of sleep apnea or hypopnea events is
addressed using a single channel electrocardiography (ECG)
signal by analysis of respiratory extracted modulation. First,
R peaks are detected from ECG signal. Then, a time-series
with the amplitude (height) and timing of R peaks represent-
ing respiratory-induced amplitude modulation is constructed.
This signal is resampled evenly at 4Hz. Synchrosqueezed
wavelet transform (SSWT) together with an iterative time-
frequency ridge estimation is applied to provide a robust esti-
mation of instantaneous respiratory frequency and detect the
regions with/without sleep apnea/hypopnea events. Signal
reconstruction using inverse synchrosqueezed wavelet trans-
form (ISSWT) has been performed. The appeared peaks can
identify and measure the duration of apnea/hypopnea events.

Index Terms— synchrosqueezed wavelet transform,
sleep, respiratory rate

1. INTRODUCTION

Obstructive sleep apnea (OSA) is a serious sleep disorder
that is characterised as a pause/stop in the breathing pattern.
Polysomnography (PSG) as a standard and state of the art
system has been used by clinicians in order to detect vari-
ous sleep disorders including OSA and quality of sleep. The
PSG system includes a number of wearable sensing modal-
ities (such as electroencephalography (EEG), electrocardio-
gram (ECG), sound, and accelerometer) attached to the body
and skin to record various signals essential to measure physi-
ological parameters continuously.

The heart signals recorded by the ECG electrodes have
been used to identify the OSA events by mainly applying ma-
chine learning techniques to classify ECG signal segments
into either sleep apnea or non-apnea events[1, 2, 3]. Acous-
tic signals are also used to classify sleep apnea events [4, 5].
Recently, the accelerometer and the microphone sensors are
used to detect sleep apnea using smart phones [6].

In traditional approaches feature extraction is performed
from heart rate variability and respiratory signals both de-
rived using ECG signals. Then, machine learning models

are trained and tested on the new data. In this paper, instead
of fitting models to the trained data, we look in detail into
the time-frequency domain of the ECG-derived respiratory
modulation to recover and analyse the main respiratory com-
ponent. We propose to apply a strong time-frequency tech-
nique called synchrosqueezed wavelet transform (SSWT) to
the 4Hz resampled respiratory induced modulated waveform.
The SSWT has provided sharp time-frequency ridges with
maximum energy presenting dominant instantaneous respira-
tory frequencies. In addition, the dominant time-frequency
ridge in time domain is reconstructed using inverse syn-
chrosqueezed transform (ISSWT). This signal is then used
to directly analyse the ECG signal segments with or without
sleep apnea/hypopnea events. The method is expected to pro-
vide a new tool for determination of sleep apnea events from
photoplethysmography (PPG) signals. The remainder of the
paper is as follows. In Section 2, SSWT is explained. The
overall method is summarised in Section 3. The results are
provided in Section 4. Finally, Section 5 concludes the paper
by highlighting its contribution and future work.

2. SYNCHROSQUEEZED WAVELET TRANSFORM

SSWT as a time-frequency reassignment technique to en-
hance the time-frequency spectral representation of the signal
[7], has often been used for analysis of auditory signals.
SSWT contains three major steps which are summarised in
the following. Step 1: In this step, the continuous wavelet
transform (CWT) is applied. Suppose that the input signal is
s, its CWT is obtained as:

Ws(a, b) =

∫ ∞
−∞

s(t)a−1/2ψ(
t− b
a

)dt (1)

where ψ is the selected mother wavelet (ψ presents complex
conjugate form), t is the time index, a is the wavelet scale,
and b is the position parameter. It is necessary to reconstruct
the selected mother wavelet to be concentrated on the positive
frequency axis; i.e., ψ̂(ε) = 0 for ε < 0. Assume that the
input signal is purely harmonic so that it can be presented as
s(t) = A cos(ωt). Then, using Plancherel’s theorem [7], the
CWT can be expressed as:
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Fig. 1. The signals simultaneously recorded using multiple
sensor PSG system [11].

Ws(a, b) =

∫ ∞
−∞

s(t)a−1/2ψ(
t− b
a

)dt

=
1

2π

∫ ∞
−∞

ŝ(ε)a1/2ψ̂(aε)eibεdε

=
A

4π

∫ ∞
0

[δ(ε− ω) + δ(ε+ ω)]a1/2ψ̂(aε)eibεdε

=
A

4π
a1/2ψ̂(aω)eibω

(2)

When ψ̂(ε) is concentrated around ε = ω0, thenWs(a, b) will
be concentrated around a = ω0/ω that is spreading out over
a region around the horizontal line a = ω0/ω. In the case
that ω = ω0/a is similar but not exactly equal to the actual
instantaneous frequency (IF) of the input signal, then, there
exists some non-zero energy for Ws(a, b). The objective of
synchrosqueezing is to move all of this energy away from ω.
This has been done by reassigning the frequency locations
closer to the actual IF. Step 2: In this step, the candidate IFs
(ω(a, b)) can be calculated by applying the following equa-
tion, for which Ws(a, b) 6= 0:

ω(a, b) = −i(Ws(a, b))
−1 ∂

∂b
Ws(a, b) (3)

It is very straightforward to demonstrate that for a purely
harmonic signal s(t) = A cos(ωt), ω(a, b) are obtained as ω
[7]. The candidate IFs are used to recover actual frequencies
in the next step. Step 3: In this step called synchrosqueezing,
using (b, a) ⇒ (b, ω(a, b)), the time domain is mapped into
the time-frequency domain using a re-allocation technique.
Considering ωl as the closest frequency to the original point
ω(a, b), each value of Ws(a, b) is re-allocated into Ts(ωl, b):

Ts(ωl, b) = (∆ω)
−1 ∑

ak:|ω(ak,b)−ωl|≤∆ω
2

Ws(ak, b)a
−3/2
k (∆a)k

(4)

where ∆ω represents the width of those frequency bins [ωl −
1
2∆ω, ωl+

1
2∆ω], ∆ω = ωl−ωl−1, (∆a)k = ak−ak−1 and

Ts(ωl, b) is the synchrosqueezed transform at the centres ωl of
successive frequency bins. First, the reassigned frequencies
are estimated, at each fixed time point b, using equation (3) for
all scales. Then, for each desired IF of ωl, Ts(ωl, b) has been
calculated by summing all Ws(a, b) considering the distance
between the reassigned frequency ω(a, b) and ωl that must be
within a specified frequency bin width (∆ω/2).

SSWT can be applied to a desired signal (s(t)), where in-
stead of consideringWs(a, b) (equation (1)), we use Ts(ωl, b)
(equation (4)) to generate the time-frequency spectrum of the
input signal for energy analysis. It has been shown in [7] that
following the synchronosqueezing stage, the original signal
can be analytically reconstructed. In overall, Ts(ωl, b) is con-
centrated more sharply around the actual IFs of the original
signal. The resulted spectrum from SSWT is expected to be
more sparse than Ws(a, b) obtained by wavelet transform.

For signal reconstruction, ISSWT can be applied which
inverts the CWT integrating over the frequencies that are as-
sociated with a desired component. Suppose that a fully
discretized version of the equation (4) is represented as
T̃s(wl, tm). The input to the ISSWT can be a set of fixed
frequency ranges specified by the user, or frequencies ob-
tained by applying a standard least-squares ridge extraction
method [8]. Let’s denote these frequencies as l ∈ L(tm),
where m = 0, ..., n − 1, tm = t0 + m∆t, aj = 2j/nv∆t,
j = 1, ..., Lnv , Lnv is the number of scales. Then, the signal
at mode k can be reconstructed using:

sk(tm) = 2R−1ψ <(
∑

l∈L(tm)

T̃s(wl, tm)) (5)

where Rψ is a normalisation constant defined in [8]. As ex-
plained in the next sections, we use both a set of fixed fre-
quencies [0.08-0.5]Hz and those by the least-squares ridge
extraction method to retrieve certain respiratory components.

3. METHOD

Detection of normal and abnormal sleep events here relies
on the estimated respiratory frequencies. An iterative time-
frequency ridge estimation has been provided to find a con-
tinuous time-frequency ridge with maximum energy from the
SSWT. A disconnection in the time-frequency plane of the
SSWT is possibly related to sleep apnea/hypopnea. A pseu-
docode to reliably estimate the respiratory frequency has been
provided in Algorithm 1 which is explained in the following
section. Based on Algorithm 1, first, the input ECG signal is
processed to locate the R peaks. Then, a time-series contain-
ing the timing of the R peaks and their amplitudes (heights) is
constructed. This time-series is called amplitude respiratory
modulation which is associated with the changes in cardiac
output related to the quantity of refill in the vessels at the pe-
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riphery [9, 10]. This modulation has been used in various
studies to estimate the respiratory rate.

The extracted amplitude modulation signal is evenly re-
sampled at 4Hz. This resampling provides a better resolu-
tion for analysis of very low frequency ranges using time-
frequency transform ensuring the Nyquist frequency to be
well above the highest clinically validated respiratory fre-
quency. Here, we apply the SSWT described in the previous
section to provide sharper time-frequency representation than
that achieved by the wavelet transform.

For the abnormal sleep patterns specially for OSA pa-
tients, there is an episode of discontinuity in the time-
frequency plan of the respiratory modulation. As shown
in the next section, SSWT has been applied to the origi-
nal respiratory amplitude modulation (4Hz), and the time-
frequency ridge by considering a fixed range of frequencies
[0.08 0.5]Hz is estimated. Then, by applying the ISSWT a
signal highly correlated with airflow signal is generated (this
signal has decreased amplitudes where there is an episode of
sleep apnea/hypopnea event). This signal contains significant
information that is expected to be retrieved from the PPG
signals as an unobtrusive way in future studies to be evalu-
ated against airflow signals. This signal is generated using
ISSWT (Wssw, [0.08 0.5]Hz). Here, using Algorithm 1,
the time-frequency ridges are estimated using the SSWT iter-
atively. At each iteration, the number of additional frequency
bins [8] is increased by one compared to the previous iter-
ation. In places that there are jumps in the time-frequency
ridges, across subsequent iterations, the jumps in frequency
are expected to decrease by increasing the number of ad-
ditional frequency bins. However, after certain iterations,
the time-frequency ridges may diverge from the correct one.
We have introduced a stopping criterion based on the mean
squared error (MSE) between the reconstructed signal modes.
The algorithm stops where this error is about to increase. The
output of Algorithm 1 is the respiratory frequencies, which

Algorithm 1 Estimation of reliable respiratory frequency
-Input ECG, c(t)← input ECG
-Estimate R peaks
-Extract respiratory modulation
r(t)← Resample respiratory modulation into 4Hz
-Apply SSWT into 4Hz respiratory modulation
[Wssw] = SSWT (r(t)),
-Iterative frequency ridge estimation at kth iteration

Find time-frequency ridge [fk]:
[fk] = tfridge(Wssw, bk), (additional bins bk = k)
Reconstruct signal mode at kth iteration using:
sk(t) = ISSWT (Wssw, fk)

Calculate MSE: ek = mean(sk − sk−1)2

Stop when ek > ek−1
-Reconstruct reliable respiratory frequency [non-zero]:
[fr] = tfridge(SSWT (sk−1(t), [0.08 0.5]Hz))
-Return t, (fr(t) > 0)

Fig. 2. SSWT of the respiratory modulation (4Hz) at iteration
0 and iteration 3. SSWT is more smooth at iteration 3.
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Fig. 3. Frequency ridges estimated at iterations 0 and 3.

are nonzero for segments of the data with normal sleep pat-
terns. However, it returns zero for segments of the data where
abnormal sleep patterns exist. Therefore, we are able to focus
on segments of the data with zero respiratory rate and try
to recover information regarding the abnormal sleep events.
Here, we have reconstructed a signal mode which the signal
is zero in segments of the data with abnormal sleep events
from Algorithm 1 using ISSWT (Wsswk−1

, [0.08 0.5]Hz)
where Wsswk−1

= SSWT (sk−1(t)). If from this signal
we subtract the original filtered 4Hz respiratory modula-
tion, the residual signal will be around zero at segments of
valid/normal respiratory frequency while the signal pulse
peaks with higher amplitudes corresponding to the sleep ap-
nea/hypopnea events. This is due to the fact that we can
correctly reconstruct a signal in time-domain for normal res-
piratory frequencies with almost zero discontinuity.

4. RESULTS

The recorded PSG signals include an EEG, ECG, electro-
oculogram (EOG), electromyogram (EMG), breathing (flow)
that provides the airflow signal, respiratory effort channels,
sound and movement sensors. The dataset used in this re-
search included a set of healthy subjects and patients with
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Fig. 4. Reconstructed signal mode at iteration 3, original am-
plitude modulated signal (4Hz), and residual are overlaid.
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Fig. 5. The frequency ridges at 3 iterations are shown. The
algorithm is stopped at iteration 3.

Fig. 6. SSWT of the respiratory modulation (4Hz) at iteration
0 and iteration 2. SSWT is more smooth at iteration 2 for
segments where there are no evident apnea/hypopnea events.

OSA [11]. Sample signals from a PSG system for patient
with OSA are shown in Fig. 1. One ECG channel (ECGI)
was used to estimate and evaluate the respiratory frequencies.
The sampling frequency of ECG signal was fixed at 200Hz
while the airflow signal was sampled at 10Hz.

A healthy subject was selected and Algorithm 1 applied to
reconstruct the frequency ridge component representing the
respiratory frequency. The calculated MSE at iterations 1,2,3
and 4 were obtained as 1.2, 0.04, 1.6×10−4 and 2.7×10−4.
The algorithm stopped at iteration 4, therefore, the frequency
ridge and signal mode at iteration 3 were reconstructed. The
SSWT of the original respiratory modulation (4Hz) (called
iteration 0) and the reconstructed signal mode at iteration 3
are shown in Fig. 2. The frequency ridge and reconstructed
signal mode are shown in Fig. 3. As seen in this figure,
there are a significant number of frequency jumps at itera-
tion 0 where there is no additional frequency bins (zero ad-
ditional frequency bin) while the frequency jumps are min-
imised at iteration 3. If we apply the ISSWT to the SSWT
obtained by the signal mode at iteration 3, (with frequencies
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Fig. 7. Reconstructed signal mode at iteration 3, original am-
plitude modulated signal (4Hz) and residual are overlaid.
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Fig. 8. Reconstructed signal mode from [0.08 0.5]Hz fre-
quencies (ISSWT) with a high correlation to airflow signal.

[0.08 0.5]Hz), the reconstructed signal is highly correlated
with the original respiratory modulation (4Hz). These two
signals along their residual signal are plotted in Fig. 4. In
the following it is shown how this residual signal is useful
in identification of abnormal sleep events noting that the data
from a healthy subject was used in Fig. 4. Algorithm 1 was
applied to the input ECG signal of a patient with OSA. The
calculated MSE at iterations 1,2 and 3 were obtained as 168.6,
2.7, and 8.7. The algorithm stopped at iteration 3, therefore,
the frequency ridge and signal mode at iteration 2 were recon-
structed. The results of frequency ridge extraction and signal
mode reconstruction are shown in Fig. 5 at iterations 0, 1,
2 and 3 which represent 0, 1, 2 and 3 additional frequency
bins, respectively. SSWT of the reconstructed component at
iterations 0 and 2 are shown in Fig. 6 where the respiratory
frequencies within [0.08 0.5]Hz are removed from the begin-
ning and end of the signal at iteration 2 which correspond to
sleep apnea/hypopnea events. If we apply the ISSWT as sug-
gested in Algorithm 1, only respiratory frequencies for non-
apnea/hypopnea events are non-zero and the rest is zero. The
corresponding time-domain reconstructed signal is also zero
for apnea/hypopnea events. From this signal (obtained by ap-
plying ISSWT at iteraion 2) the original respiratory modula-
tion (4Hz) is subtracted. The residual plotted in Fig. 7 (green)
is zero for non-apnea/hypopnea events. From this figure, the
pulse peaks have appeared in the residual signal which can be
used both to identify and measure the duration of sleep ap-
nea/hypopnea events. In addition, ISSWT applied to the orig-
inal respiratory modulation (4Hz) using [0.08 0.5]Hz shown
in Fig. 8 is highly correlated with the airflow signal.

5. CONCLUSIONS

This paper has directly evaluated the spectrum of respiratory
induced modulation of ECG from PSG recordings to investi-
gate the sleep apnea/hypopnea events. Unlike previous meth-
ods that use feature extraction and machine learning tech-
niques for this purpose, we have provided signal processing
techniques to observe changes in spectrum of the ECG respi-
ratory modulation to identify abnormal sleep events. In future
studies, the method will be applied to the PPG signals to esti-
mate these abnormal sleep events as well as designing a relia-
bility index for breathing rate estimation that has been done in
this paper by iterative frequency ridge estimation technique to
detect and measure duration of sleep apnea/hypopnea events.
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