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ABSTRACT

Assessment of sleep can reveal healthy physiology and be-
haviour, which are essential to study diseases and treatment.
The primary approaches to quantify sleep in animal mod-
els are using invasive methods that require implantation of
electroencephalogram (EEG) and electromyogram (EMG)
electrodes. Those methods are resource-intensive and less
than ideal for high-throughput screening. Several studies
proposed using video processing to monitor sleep. Those ap-
proaches require high quality videos and an optimal threshold
value which can be sensitive to different experiment settings.
In this paper, we present a trainable video-based approach
that can alleviate those limitations. We have come up with
a set of effective features at frame-level which are then put
into a recurrent neural network to capture long-term tempo-
ral features. The result obtained is highly correlated with
EEG/EMG-defined sleep.

Index Terms— Long Short Term Memory, sleep assess-
ment, animal behavior recognition

1. INTRODUCTION

Sleep is universally present in all species studied so far,
from fruit flies to humans. Sleep is tightly regulated, and
its loss impairs many physiological functions. However, it
is disrupted in numerous pathological conditions, such as
chronic pain, Parkinson’s disease, and autism spectrum disor-
der. Conversely, its disturbance is considered a risk factor for
many diseases, including depression, Alzheimer’s disease,
type 2 diabetes, cardiovascular disease, and obesity. Among
mammals, mice have been increasingly used to character-
ize behavior for genetic and translational studies because
they are small, low cost, and easy to breed. Excellent re-
sources exist for identifying abnormal physiology and any
related genes [1, 2]. Common assessments of sleep in mice
are the electroencephalogram (EEG) and electromyogram
(EMG) which involve invasive surgery followed by time
to recover from surgery, which makes them impractical for
high throughput screening. To tackle those problems, several
methods have been proposed. Storch et al. [3] implanted a
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small magnet subcutaneously near the neck muscles of mice
and their movement is determined through movements of the
magnet that were registered via a sensor plate. Althought
this method can be used for rapid pre-screen in animal sleep
research, it still requires surgical intervention. In a different
study, a non-invasive high-throughput system was described
that used a single Polyvinylidine Difluoride sensor installed
on the cage floor to measure pressure signals caused by move-
ment [4]. Another non-invasive method used highly sensitive
piezoelectric motion detectors attached to the cage floor [5].
Those film strips can capture movement due to respiration
during sleep and other activities. Similarly, Brown et al. [6]
introduced a system to measure activity in mice based upon
passive infrared motion sensors. These approaches men-
tioned above have shown certain advantages over EEG/EMG
methods, but they require specialised equipment, careful cal-
ibration and custom software, which are the reasons they are
not widely used. An alternative high-throughput strategy is
video analysis. The first significant work based on video
processing [7] concluded that any period of continuous im-
mobility of ≥40 s is likely to be sleep and their algorithm
could achieve an average agreement of 92% with EEG/EMG
recordings. Fisher et al. [8] proposed a complete system
integrated with available commercial software and hardware
that biologists can easily replicate. Besides using the ≥40
seconds of immobility identified in [7], the paper further in-
vestigated optimal threshold values determining immobility.
Inspired by breakthroughs in the field of machine learning
in recent years especially the advantage of Recurrent Neural
Network (RNN) to capture sequence features, we propose a
trainable method for detecting sleep in mice. In particular, we
come up with a set of tracking and posture features and fur-
ther learn temporal features of those features through a Long
Short Term Memory (LSTM) Network. The result obtained
is highly matched with EEG/EMG-based assessment.

2. RELATED WORK

Capturing meaningful features is crucial in machine vision
tasks. Since videos are considered as time series signals and
therefore the most challenging aspect in deep-based models is
to deal with the temporal dimension [9]. A number of studies
have proposed different approaches to extract spatio-temporal
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Fig. 1: The overview of proposed approach with 3 main
stages: foreground detection, frame and temporal feature ex-
traction and classification.

features for video processing. Recently, deep learning tech-
niques have outperformed hand-crafted spatio-temporal fea-
ture extractors in various applications from tracking to ges-
ture and action recogntion [9, 10]. One approach is to extend
the convolution network [11, 12] along the temporal axis in
order to capture temporal information, [13, 14]. However, the
main downside is that the temporal axis is limited in order to
fit existing memory. A second approach proposed a combi-
nation of Convolutional Neural Network (CNN) and Recur-
rent Neural Network (RNN) to build a model in which fea-
tures extracted from a CNN are put in an RNN in sequence to
learn temporal features [15, 16]. Despite of the dominance of
CNN features in computer vision applications, almost all ap-
proaches in rodent behavior recognition use hand-crafted and
tracking features [17, 18]. This can be explained by the fact
that rodents do not have distinctive body features. Their limbs
are too small compared with their bodies and there are lot of
variations in terms of postures, which makes it expensive to
produce a quality dataset for CNN to learn. Therefore, we be-
lieve that extracting describable features instead of CNN fea-
tures and learning temporal features throught RNN can save
a great amount of time and be easily replicated in different
experiment settings.

3. PROPOSED METHOD

Fig. 1 shows the pipeline of the proposed approach which
consists of 3 modules. The input video is first subtracted from
estimated background to obtain foreground mask for pixels

belonging to the mouse and then features at frame level are
computed from foreground. Those features are fed into an
LSTM network to extract long-term temporal features which
are then classified in the last stage. We provide details of
stages in following subsections.

3.1. Experimental setup

All procedures in this study were performed in accordance
with the recommendations in the Canadian Council for An-
imal Care. The protocol of this study was approved by the
Health Sciences Animal Care Committee of the University
of Calgary. C57BL mice were housed in a humidity- and
temperature-controlled room with a 12-h light/dark cycle and
were fed ad libitum. On postnatal day 28, stainless steel screw
EEG electrodes (Pinnacle Technology Inc., #8247) were im-
planted. For dorsal neck muscle EMG recordings, the nuchal
muscles were surgically exposed, EMG electrodes were in-
serted underneath and sutured in place. Animals were al-
lowed one week of recovery. EEG and EMG was acquired at
250 Hz. A camera was installed above the cage and pointed
towards the bottom of the cage. Infrared lights and a visible
light blocking filter were used to ensure constant illumination
regardless of the light/dark cycle. Videos were synchronized
with EEG and EMG, and recorded at 15 frames per second
with a resolution of 480 × 540. Sleep epochs were identi-
fied when EMG power dropped below 50% of the median for
more than 30 seconds and EEG 1-4 Hz delta activity was ele-
vated [19].

3.2. Foreground detection

As long as the reasonable contrast between background and
mice is maintained, the background can be considered sta-
tionary and is estimated by a temporal median filter in the
very first frames. However, the primary challenge of our data
is the movement of EEG tether and the bedding material in
the field of view. These are sometimes significant in com-
parison with the mouse, and therefore we could not obtain the
foregound mask by subtracting the video background directly.
We first locate a region of interest throughout applying mor-
phological processing, and then the correct foreground can be
obtained as shown in Fig. 2.

3.3. Frame-level feature extraction

After obtaining the mouse body mask, the coordinates of key
points are determined as in Fig. 3. Firstly, the body center
(C), the centroid of the foreground, is calculated as follows:

Cx =
ΣxxΣyI(x, y)

Σx,yI(x, y)
;Cy =

ΣyyΣxI(x, y)

Σx,yI(x, y)
(1)

where I(x, y) equals 1 if it belongs to the foreground F and
0 otherwise. Then the nose (N) is located as the point on the
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Fig. 2: Foreground detection: a region of interest is ob-
tained by applying morphological operations on the raw im-
age, background subtraction then gives the foreground.
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Fig. 3: Extracted features: the nose (N), centroid (C) and tail
base (T) are used to find velocities. The area of overlap di-
vided by the current foregound area is the fractional immobil-
ity. The angle subtended by N and T at C and the ratio of CN
to CT are also indicated.

boundary that is the farthest from the body center. Similarly,
tail base (T) is the point on the boundary that is farthest from
the nose. We then computed six features that represent the
movement and posture of the mouse. The features include
‘fractional immobility’ between current and previous frames
(FI); velocities of the centroid (VC), the nose (VN ) and the
tail base (VT ); cosine of the angle subtended by the nose N

and the tail base T at the centroid C (cos θ); and the ratio of
the centroid-nose to the centroid-tail base distance (R).

FI(t) =
F (t) ∩ F (t− 1)

F (t− 1)
(2)

VC(t) = ‖C(t)−C(t− 1)‖ (3)

VN (t) = ‖N(t)−N(t− 1)‖ (4)

VT (t) = ‖T(t)−T(t− 1)‖ (5)

cos θ(t) =
CN(t) ·CT(t)

‖CN(t)‖‖CT(t)‖
(6)

R(t) =
‖CN(t)‖

‖CT(t)‖
(7)

The first four features are designed to capture movements
while the last two designed to capture posture. The veloc-
ity features should be divided by the frame interval, however
that is a constant scaling factor and can be dropped.
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Fig. 4: Structure of LSTM cell

3.4. LSTM network for learning temporal features

3.4.1. LSTM cell

Recurrent Neural Networks have been used to capture se-
quential information, especially complex temporal dynamics.
They are widely used in Natural Language Processing (NLP)
such as speech recognition [20] and machine translation [21],
video processing [22], and image captioning [23]. Given an
input sequence x = (x1, ..., xT ) to a conventional RNN, the
hidden vector sequence h = (h1, ..., hT ) and output vector
sequence y = (y1, ..., yT ) are computed by iterating the fol-
lowing equations from t = 1 to T .

ht = φ(Wxhxt +Whhht−1 + bh) (8)

yt = φ(Whyht + by) (9)

where W terms are weight matrices, b terms are bias vectors
and φ is an activation function.

However, training initial RNNs is difficult due to the
problems of vanishing and exploding gradients [24]. Accord-
ingly, many variants of RNN have been proposed and among
the most widely used models is Long Short Term Memory
(LSTM) shown in Fig. 4. The key to LSTMs [25] are memory
cells for storing and outputing information. These cells are
carefully regulated by structures called gates. LSTM updates
memory cell ct and hidden layer ht as follows:

it = σ(Wxixt +Whiht−1 + bi) (10)

ft = σ(Wxfxt +Whfht−1 + bf ) (11)

ot = σ(Wxoxt +Whoht−1 + bo) (12)

ct = ftct−1 + itϕ(Wxcxt +Whcht−1 + bc) (13)

ht = otϕ(ct) (14)

where σ and ϕ are sigmoid and hyperbolic tangent functions.
i, f, o, h and c are respectively the input gate, forget gate,
output gate, hidden state and cell state.

3.4.2. Network architecture

Our architecture consists of two stacked LSTM layers, each
layer with 64 memory cells and then a softmax classifier as
shown in Fig. 1. The softmax classifier outputs the probability
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of the behavior with index k at time t as follows:

P (k, t|x) =
exp(ykt )

Σk′exp(yk
′

t )
(15)

4. EXPERIMENTAL RESULTS

EEG, EMG and videos were recorded simultaneously for 3
days in one mouse. The data of the first day was used to
train the model and then the model was tested on the last
two days. We evaluated our proposed method in the same
way as [7], scoring the continuous recordings in 10-s epochs
(8,640 epochs across 24 h). The average accuracy over 8,640
10-s epochs in 24 h is 95.4% with 95.2% for the first test-
ing day and 95.6% for the second testing day in comparison
with 92% in [7]. We also achieved an accuracy at a single
frame level of 95.3%. To compare with the approach pro-
posed in [8], we used the first day’s data which is the train-
ing data of our model to determine the optimum immobility
threshold value for estimating sleep. The sensitivity of immo-
bility detection was varied from 50% to 100% and a duration
of immobility of 40 s or greater was considered as sleep [7].
We identified 95.5% as the optimum sensitivity for immobil-
ity detection which is quite similar to the value of 95% deter-
mined in [8]. We then used this value to assess sleep in the
testing data. In terms of accuracy over 8,640 10-s epochs in
24 h, the immobility-based method got 90.5% and 92.7% for
the two testing days. Also, this method achieved an accuracy
at a single frame level of 91.2%. Fig. 5 shows a comparison of
our method, immobility-defined sleep and EEG-defined sleep
over 48 hours. To investigate the effects of chosen features,
we repeatedly leave one feature out and train the model again.
Fig. 6 shows the accuracy of models corresponding each fea-
ture dropped out. Among six defined features, centroid veloc-
ity affects the overall accuracy the most.

5. CONCLUSION

We have described a high throughput, trainable, video-based
method to assess sleep in mice. Inspite of a tether for wired
EEG/EMG recording, which posed significant barriers in
background subtraction stages leading to sub-optimal feature
extraction, the results were highly correlated with EEG/EMG-
based assessment in both cumulative and instantaneous mea-
sures. This makes the system well suited for experiments
requiring other tethered manipulations such as optogenetics
or fiber photometry. With higher resolution and higher frame
rate imaging, our approach can get even better, but at the cost
of increased memory for image acquisition.

6. REFERENCES

[1] Thierry F Vandamme, “Use of rodents as models of
human diseases,” Journal of Pharmacy & Bioallied Sci-

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

EEG/EMG-defined sleep

Proposed method

Immobility-defined sleep
60

40

20

0

S
le

e
p

/h
o
u
r 

(m
in

)

A

10

0B

Proposed method

Immobility-defined sleep

E
rr

o
r 

in
 s

le
e

p
/h

o
u
r 

(m
in

)

20

-10

-20
0 12 24 36 48

Time (hour)

Fig. 5: (A) Comparison of sleep amounts in 1-h intervals
across 48 hours. (B) Mean difference between two meth-
ods: The RMS errors in the proposed method and immobility-
based method are 2.4 minutes and 4.4 minutes, respectively.

94.00%

93.18%
92.01%

93.46% 93.06% 93.58% 93.49%

A
cc

u
ra

cy
 w

it
h

o
u

t

Accuracy considering all 6 features (95.4%)

Fractional

immobility

Centroid

velocity

Nose 

velocity

Tail base

velocity

Cosine

(CN, CT)

Ratio

CN/CT

sp
e

ci
fi

c 
fe

a
tu

re

Fig. 6: Contribution of each feature to the overall accuracy

ences, vol. 6, no. 1, pp. 2, 2014.

[2] Danielle Simmons, “The use of animal models in study-
ing genetic disease: transgenesis and induced mutation,”
Nature Education, vol. 1, no. 1, pp. 70, 2008.

[3] Corinna Storch, Arnold Höhne, Florian Holsboer, and
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