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ABSTRACT

Studies have shown that people with different personalities
would result in a different physiological reaction when en-
countering emotional stimulus. In this work, we propose an
attribute-invariance loss embedded variational autoencoder
(AI-VAE) to learn the personality-invariant physiological sig-
nal representation. The AI-VAE includes an additional loss
aiming to perturb features from different personality polarity
to obtain emotion discriminative representation. We evaluate
our framework on a large emotion corpus of physiological
data. Our method achieves a state of the art unweighted
accuracy of 68.8% and 67.0% in a binary classification of
arousal and valence, which improves over the baseline vanilla
VAE by 5.5% and 6.5%. Further analysis reveals that sev-
eral EEG features are statistically relevant between different
personalities types across emotional states, and ECG features
are also specifically correlated to personality dimension of
“Creativeness”, underscoring the importance of personality
in modulating psychophysiological processes.

Index Terms— personality, physiological representation,
emotion recognition, variational learning, psychophysiology

1. INTRODUCTION

Affective response is a psychophysiological process triggered
by conscious and/or unconscious stimuli and is often mani-
fested through humans observable behaviors [1]. Automatic
emotion recognition has largely been developed by model-
ing human’s observable behaviors such as speech, facial ex-
pression, and linguistic content. Recently, the advancement
of miniaturized physiological sensors and mobile computing
technologies has enabled continuous monitoring of human in-
ternal physiological signals such as electroencephalography
(EEG), electrocardiography (ECG), and electrodermal activ-
ity (EDA). This has drawn increasing interest for researchers
to model the interrelationship between the measured physi-
ological signals and the psycho-physiological process. For
example, research has shown that features derived from EEG
and ECG are correlated highly with symptoms of depression
[2]; the neuro-perceptual response measured by functional
Magnetic Resonance Imaging (fMRI) can be used to auto-
matic decoding the emotion stimuli [3].

Affective responses manifested through physiology are
known to be modulated by a person’s personality. Specifi-
cally, the personality-affect relationship has been extensively
studied in the Eysenck’s personality model [4]. Eysenck
states that the personality trait of extraversion is correlated
with cortical arousal, i.e., extraverts require higher external
stimuli to reaches the same physiological status than intro-
verts. Eysenck also suggests that neurotics are more sensitive
to external stressors and are likely to appraise their environ-
ment to be more stressful. Other research also indicates that
people with high agreeableness have higher emotional self-
regulation [5]. Winter and Kuiper extensively examine the
relationship between personality and emotion and propose a
self-schema model to theorize the underlying mechanism [6].
Komulainen et al’s study shows that personality traits lead
to different reactions of daily emotion process, e.g., neurotic
people have a more negative affect, and high conscientious-
ness people have lower reactivity to negative affect [7].

Although personalities play a major role in emotional re-
sponses, few works have systematically considered their re-
lationship while developing automated emotion recognition
system using physiological data. The most related work is the
use of hypergraph-based model recently proposed by Zhao et
al. [8], which utilizes network graph to constrain the higher
order interactions among personal attributes, emotional re-
sponses, and affective labels. However, the framework is re-
stricted to be applied in a speaker-dependent scenario only.
In this work, we develop a mechanism in learning represen-
tation with a personality-invariance loss to mitigate the issue
of individual idiosyncrasy to achieve a more robust subject
independent emotion recognition from physiology.

Specifically, we propose an attribute-invariance loss em-
bedded variational autoencoder (AI-VAE) to learn physiolog-
ical signal representation for the task of inferring a subjects
emotion status. Our framework is evaluated on the publicly-
available large-scale AMIGOS dataset [9], which includes
recordings of EEG, ECG, and EDA. The framework achieves
an unweighted accuracy of 68.8% and 67.0% for arousal and
valence recognition, which is 5.5% and 6.5% relative im-
provement over the standard VAE method. We further provide
analysis of the measured internal physiological responses as
a function on the personality-affect relationship.
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Fig. 1. Our proposed Attribute-Invariance loss embedded VAE (AI-VAE) to recognize emotion controlling for personality
polarities. The VAEs are pretrained under five different personality dimensions (Openness, Conscientiousness, Extraversion,
Agreeableness, Neuroticism), and the final result is aggregated by late fusion of each SVM classifier.

2. RESEARCH METHODOLOGY

2.1. AMIGOS Dataset
This study uses AMIGOS Dataset [9] for developing and
evaluation. The dataset is composed of 40 subjects with
each watching 16 short emotional videos (duration<250s)
and 4 long videos (duration>14min). The video stimuli are
carefully chosen from two other databases designed to study
physiological response to emotional videos. These videos are
reannotated to select a subset of those having the most emo-
tional content. EEG, ECG and EDA and frontal video (RGB)
are recorded simultaneously. For each subject, the Big-Five
personality traits are measured with an online form using the
Big-Five marker scale questionnaire [10]. For each trial, the
individuals internal affective annotations (self-assessment)
are performed before and after each trial, and external anno-
tations (observational-assessment) are conducted by 3 anno-
tators indicating the participant’s arousal and valence scores.
A total of 800 recordings are in the dataset, but only 766
records are used due to the ill quality issues. We carry out
our experiments as a binary classification problem using the
mean of external observers’ annotations. The two classes
(high and low arousal and valence) are divided by reference
to the median of each affective dimensions computed over
the entire corpus.

2.2. Computational Framework
We will elaborate our proposed computational framework in
this section. Figure1 depicts our overall framework, including
low-level feature descriptors, variational autoencoder, and the
proposed attribute-invariance multi-modal fusion network.

2.2.1. Low-Level Physiological Descriptors
For EEG, a bandpass filter from 4-45Hz is applied. ECG and
EDA are both filtered by a low-pass filter with 60Hz cut-off
frequency. Then, several standard LLDs are extracted using
[11]. The detailed features are listed in Table 1. Besides,

1max, min, mean, median, std, skewness, kurtosis, min position,
max position, 25 percentile, 75 percentile, 75 percentile-25 percentile,
1 percentile, 99 percentile, 99 percentile-1 percentile

Table 1. A summary of physiological llds. “F*” states for 15
statistical functions.1 EEG functions are calculated for each
channel then concatenated as a single feature vector.

Modality Low-Level Descriptors

EEG(378)
Hjorth, Kurtosis, Skewness, First diff mean, First diff max,
SecDiffMean, SecDiffMax, Slope mean, Slope var,
Wavelets, MaxPwelch,Entropy, AutoRegressiveParameters

ECG(50)

number of artifacts, RMSSD, meanNN, sdNN, cvNN,
CVSD, medianNN, madNN, mcvNN, pNN50, pNN20, Triang,
Shannon h, ULF, VLF, LF, HF, VHF, Total Power, LFn,HFn,
LF/HF, LF/P, HF/P, DFA 1, DFA 2,Shannon,
Sample Entropy, Correlation Dimension,
Entropy Multiscale AUC, Entropy SVD,
Entropy Spectral VLF, Entropy Spectral LF,
Entropy Spectral HF, Fisher Info, FD Petrosian,
FD Higushi, Average Signal Quality,
F* Cardiac Cycles Signal Quality

EDA(60)
F*SCR Onsets, F*SCR Peaks Amplitudes,
F*EDA Phasic, F*EDA Tonic Component

a standard z-normalization is performed on each feature di-
mension for each subject to mitigate the issue of individual
difference.

2.2.2. Maximum-Mean Discrepancy VAE (MMD-VAE)
Variational autoencoder has shown its great performance in
learning informative latent representation in an unsupervised
manner for affective multimodal data. However, recently re-
searcher has observed that the learned latent information may
not be informative due to the Kullback-Leibler Divergence
(KLD) criteria used while optimizing the evidence lower
bound (ELBO). To learn a more representative latent repre-
sentation of our physiological data, we use the MMD-VAE
that has been proven to obtain better modeling power on both
quantitative and qualitative metric [12]. Given an input x, the
standard VAE contains an encoder and decoder parameterized
by φ and θ respectively. Then, we learn the network weights
by maximization of variational evidence lower bound:

logpθ(x) ≤ −(Jlat(x) + Jrec(x)) (1)
Jlat(φ;x) = DKL(qφ(z)||pθ(z)) (2)

Jrec(φ, θ;x) = −Eqφ(z)[logpθ(x|z)] (3)
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Table 2. A summary of prediction results. VAE: intrinsic VAE. A-VAE: VAE with domain adversarial discriminator loss.
AI-VAE: proposed framework which is attribute-invariance loss embedded VAE. LF: Late fusion among 5 personalities.

UAR SVM VAE A-VAE C-VAE AI-VAE
Agr Con Cre Emo Ext LF Agr Con Cre Emo Ext LF Agr Con Cre Emo Ext LF

Low 0.614 0.680 0.638 0.641 0.650 0.638 0.632 0.638 0.656 0.656 0.613 0.619 0.613 0.674 0.683 0.665 0.656 0.659 0.674 0.740
High 0.589 0.586 0.523 0.517 0.495 0.523 0.523 0.523 0.619 0.607 0.656 0.656 0.659 0.637 0.631 0.634 0.637 0.634 0.616 0.637

Arousal 0.601 0.633 0.58 0.578 0.572 0.58 0.577 0.554 0.637 0.631 0.634 0.637 0.636 0.655 0.657 0.649 0.646 0.645 0.651 0.688

Low 0.575 0.743 0.680 0.620 0.623 0.620 0.599 0.620 0.671 0.677 0.656 0.668 0.659 0.751 0.668 0.671 0.668 0.686 0.677 0.743
High 0.613 0.468 0.498 0.571 0.559 0.571 0.556 0.571 0.562 0.580 0.562 0.565 0.568 0.514 0.604 0.604 0.580 0.604 0.592 0.598

Valence 0.594 0.605 0.589 0.595 0.59 0.595 0.577 0.595 0.616 0.628 0.609 0.616 0.613 0.633 0.636 0.637 0.624 0.645 0.634 0.670

where z is our latent code vector, and Pθ(z) is the variational
gaussian normal prior of z. Here, we replace the KLD with
Maximum-Mean Discrepancy (MMD):

DMMD(q||p) = Ep(z),p(z′)[k(z, z
′)]− 2Eq(z),p(z′)[k(z, z

′)]

+ Eq(z),q(z′)[k(z, z
′)]

(4)
where k(z, z′) is an positive definite kernel as e−‖z−z

′‖2 and
the l2 norm term is empirically divided by the dimension of
z. DMMD = 0 if and only if p = q.

2.2.3. Attribute-Invariance VAE
The objective of this work is to utilize a persons personality
profile to control the variability in learning a more discrimina-
tive physiological representation to affect recognition. Hence,
in this research, we propose a novel framework which em-
beds an attribute invariance loss into the original MMD-VAE
formulation. Given a batch of data x and their personality at-
tribute c, we first binarize the data pairs according to their per-
sonality attribute score into sub-batches (xh, ch) and (xl, cl),
which in our experiments is defined as being higher or lower
than the database’s median value. Then we calculate the at-
tribute invariance loss by:

Jai(φ;x, c) = D(pφ(zh|xh; ch)||pφ(zl|xl; cl)) (5)

which aims to minimize the distance between two groups of
distribution. The loss can be implemented by any divergence
families, such as KLD and Hellinger distance, or Wasserstein
distance potentially leading to a variety of results. In this re-
search, we choose the MMD as our attribute invariance crite-
ria due to its ease of implementation and robust modeling ca-
pacity. Note that the loss also includes hyperparameters alpha
and lambda to balance different losses contribution. Hence,
the final update criteria are summarized as follow:

φ
update←−−− −∇φ(α ∗ Jlat + Jrec + λ ∗ Jai)

θ
update←−−− −∇θ(Jrec)

(6)

3. EXPERIMENTAL SETUP AND RESULT

3.1. Experimental Setup
The exact architecture of our personality-invariance loss
embedded network includes: five attribute-invariance VAE
(AI-VAE) proposed in section 2, each corresponding to the
five personality dimensions. Each AI-VAE is composed of

[488−244−100−244−488] with standard fully-connected
layers using Leaky ReLU as activation function. An early
stop technique is performed and hyperparameters alpha and
lambda are grid searched with the range of [100, 200, 400]
and [500, 1000, 2000] respectively. Then we use linear sup-
port vector machine [13] as the classifier by inputting latent
feature from the AI-VAE encoder, and a late fusion is applied
to combine recognition results from different personality-
dependent AI-VAE to obtain final emotion recognition ac-
curacy. We carry out our experiments using a subject inde-
pendent 10-fold cross-validation. The final evaluation metric
used is the unweighted average recall (UAR).

3.1.1. Comparison Models
We first conduct our experiments utilizing linear SVM and
vanilla VAE without considering personal attributes. Then
there are several other algorithms developed with an aim to
tackle similar attribute-invariance embedding problems:

• Conditional Variational Autoencoder (C-VAE): C-
VAE can be used to learn a hidden vector which max-
imizes the conditional probability under an encoder-
decoder structure which adds a further constraint on the
latent representation by giving it a conditional probabil-
ity. The learned attribute-constrained encoded vector
has been shown to be effective on audio and video clas-
sification tasks [14, 15], but could suffer performance
issue due to its characteristic of weak constraint.

• Adversarial Network Training (A-VAE): A-VAE
can learn a discriminative and attribute-invariance rep-
resentation by jointly optimizing an attribute-aware
discriminator. The network structure is often set up in
a way to leverage data from different domains [16] and
design the discriminator to force the latent code to be
domain-invariance. However, the discriminator could
suffer from convergence problem if the attribute is only
vaguely correlated to the data.

We implement the above two attribute embedding networks
A-VAE (VAE with Adversarial training on personality) and
C-VAE (Conditional VAE) as a comparison to our proposed
model. The C-VAE is constructed the same as [14], and A-
VAE includes an additional discriminator with layers of node
number [100, 10, 1] that is added to the vanilla VAE. For fair-
ness, we keep the parameters exactly the same for the rest of
the layers and nodes number used in the autoencoder.
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Table 3. Comparison of mean F1-scores(mean F1-score for
both classes). Note that SVM* states for the method in [9].

F1 SVM* SVM VAE A-VAE C-VAE AI-VAE

Arousal 0.564 0.596 0.614 0.554 0.648 0.644
Valence 0.560 0.601 0.543 0.585 0.583 0.671

3.2. Personality Invariance Emotion Recognition Results
Table 2 summarizes our emotion recognition results. Our
proposed personality invariance physiological latent encod-
ing reaches the best UAR of 68.8% and 67.0% in the binary
classification of arousal and valence, which is a relative gain
of 5.5% and 6.5% over the vanilla VAE. Several notable ob-
servations can be summarized. Firstly, C-VAE demonstrates
a slightly better discriminative power under personality con-
straints over vanilla VAE, while A-VAE fails to learn a mean-
ingful latent embedding overall. We hypothesize that A-VAE
has limited capability in regulating the learning trajectory of
feature representation when the discriminator losses function-
ality and ends up converging in a non-meaningful minima.
Secondly, we can observe from C-VAE and AI-VAE that the
regulation of Agreeableness both improve the recognition for
arousal. As for valence, the proposed AI-VAE achieves the
highest result by controlling for the unwanted physiological
signal variability with personality attribute of Emotional Sta-
bility. At last, although arousal recognition achieves higher
UAR in the experiment, the framework benefits much for the
valence dimension. We can also view the same pattern com-
paring the results in Table 3, which indicates that the valence-
related physiological response has a closer relationship with
personality dimensions, and the elimination of the potential
variance improves the recognition results.
3.3. Statistical Analyses
In this section, to understand whether personalities do act as
a latent control on affective physiological signals, we per-
form a standard two-sided Students t-tests on the extracted
LLDs. We first cluster the data according to their emotion
status, then we conduct the t-test to examine whether each
physiological LLD would show a difference between high
versus low for each personality dimension given the partic-
ipant is in the same emotional state. Table 3 summarizes
the most statistically significant features (t-value>4 and p-
value<0.01), and several observations can be made from the
comparison. Firstly, the Hjorth and ARMPB feature are con-
sistently selected across different emotional states. Hjorth pa-
rameters have been carefully studied especially on alcohol-
induced personality deterioration [17], while ARMPB is a
key indicator of schizotypal personality [18], both give us
supporting evidence that personality indeed induces a hid-
den variability on specific EEG representations. Secondly, we
can see that different physiological modalities respond differ-
ently to each personality attribute. For example, EDA signal
has a little effect among all dimensions, while ECGs features
mostly correlate with “Creativeness”. It is interesting to con-
clude from our analysis that there truly exists interrelation-

Table 4. A summary of representative features which are sig-
nificant on the double-sided t-Test on personality polarities.
”F*” states for statistical functional. ARMPB: Autoregres-
sive model parameters using Burg method. CCSQ: Cardiac
cycles signal quality.

High Arousal Low Arousal
EDA ECG EEG EDA ECG EEG

Agr F*EDA Tonic HF/P
hjorth,

ARMPB
F*EDA Tonic,
F*EDA Phasic

hjorth,
ARMPB

Con
CVSD, RMSSD,

pNN50, ASQ,
F*CCSQ

ARMPB wavelet

Cre F*EDA Tonic
ASQ CVSD,

F*CCSQ,
RMSSD, LF/HF

hjorth,
ARMPB F*CCSQ, ASQ

wavelet,
hjorth,

ARMPB

Emo HF, CVSD
wavelet,
ARMPB F*EDA Tonic

Ext
Total Power,
LFn, LF/HF,

HF/P
hjorth, ARMPB

hjorth,
ARMPB

High Valence Low Valence
EDA ECG EEG EDA ECG EEG

Agr F*EDA Tonic HF/P
hjorth,

ARMPB
F*EDA Tonic,
F*EDA Phasic

hjorth,
ARMPB

Con wavelet
ASQ,

F*CCSQ

Cre
ASQ,

CVSD,
F*CCSQ,

hjorth,
wavelet,

maxPwelch,
ARMPB

ASQ, CVSD,
F*CCSQ,
RMSSD

hjorth

Emo F*EDA Tonic

Ext ARMPB, hjorth F*EDA Phasic
pNN50,
mcvNN

hjorth,
wavelet,
ARMPB

ships between emotions and personalities as manifested in
the measured physiological responses, and through our pro-
posed method, which eliminates such a personality-induced
latent factor, we obtain a “cleaner” emotional physiological
signal. Our approach is beneficial for advancing the personal
attribute-aware emotion recognition framework.

4. CONCLUSION
In this work, we present a novel framework of attribute-
invariance loss embedded VAE to recognize the emotion
given personality profiles. We apply our method to an emo-
tional video stimulus physiological signal dataset and com-
pare it with other attribute-aware architectures. The exper-
iments show our methodology improves the recognition re-
sults by 5.5% and 6.5% on arousal and valence classification
over standard VAE. Our analysis of the extracted physiolog-
ical LLDs further reveals that “Hjorth” and “ARMPB” from
EEG are key factors in bringing insight on how personality
affects physiological emotion reaction, and “Creativeness”
has a more prominent effect on the cardiovascular measure-
ment. To our best knowledge, this is one of the first work
in handling the attribute learning problem by the elimination
of personal differences on physiological emotion recogni-
tion. There are multiple future directions. An immediate
one would be to include expressive modality, such as facial
expressions, to continuously explore attribute-affect relation-
ship from both explicit and implicit behavior information.
Second, other personal attributes like gender and age or even
data-driven meta clustering should be added in. All of these
could be utilized to enhance both the accuracy and robustness
of the model that can be integrated for a variety of human
behavior modeling tasks [19, 20].
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