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ABSTRACT
Non-invasive Glucose Measurement (NGM) technology is
promising and desired for patients with hyperglycemia or
hypoglycemia. In various kinds of NGM technologies, a pre-
diction algorithm model plays a special role that is to map
a group of physical signals to a glucose level of a person at
a given time. Unfortunately, there is no practical solution
available to the public, under the circumstances of differ-
ent skin color, skin thickness, physiological differences, etc.
In this paper, a Transfer and Collaborative Learning (TCL)
method for personalized NGM modeling is proposed, and
an Artificial Neural Network Model with TCL (ANN-TCL)
is established for predicting glucose concentration, in which
model parameters can be tuned according to individual physi-
ological conditions. To verify performance of the proposal, it
is embedded into our developed NGM system, and compared
with alternate solutions. Clinical trials in the PLA NAVY
General Hospital demonstrate that this proposal can reduce
the impact of individual discrepancies (IDs), and achieve ex-
pected results (R2=0.82) for all test subjects. Obviously, it is
helpful to each patient with our NGM system for the purpose
of glucose self-monitoring. The unique gain benefits from a
special design of the self-learning strategy which can fully
take advantage of both universal and personal information.

Index Terms— Non-invasive, Blood Glucose, Transfer
Learning, Artificial Neural Network, Clinical Trials

1. INTRODUCTION

Blood glucose monitoring technology is necessary for people
with diabetes mellitus to control their Blood Glucose Con-
centration (BGC). The glucose monitoring devices currently
available in markets are either invasive or mini-invasive,
which requires pricking the skin to collect blood samples for
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tests. These measurement methods not only bring pain to the
patients but also put users at infection risks due to skin-cuts.
Both invasive and mini-invasive glucose measurement meth-
ods are not suitable for daily routine monitoring. For these
reasons, the research of Non-invasive Glucose Monitoring
(NGM) has become one of the hottest topics in healthcare.

Although many kinds of technologies have been pro-
posed, there is still no methods that meet clinical requirement
[1]. The most commonly used measurement principle is
based on optics, e.g. absorption spectroscopy [2, 3, 4, 5], Ra-
man spectroscopy[6], optical coherence tomography [7, 8, 9]
and fluorescence [10, 11]. Regardless of which theories based
on, it is necessary to establish a blood glucose prediction
model, which maps original optical signals to BGC.

In NGM modeling, the most common models are con-
figured based on Partial Least Squares Regression (PLSR)
[12, 3, 2], Support Vector Regression (SVR) [13, 14], and/or
Artificial Neural Networks (ANN) [15, 16]. E.g., Ashok et
al. [16] presented a supervised three-layer ANN for estimat-
ing BGC based on reflected laser beam from the index finger.
In most studies, the blood glucose prediction model is trained
on a full dataset, which contains data onto all subjects. This
type of model does not consider the impact of Individual Dis-
crepancies (IDs) on signals, resulting in a lower accuracy for
some individuals. There are many IDs in NGM, e.g., thick-
ness and color of skin tissue, oxygen, body temperature, etc.
To overcome IDs, researchers have tried a variety of methods
[2, 17]. However, different measurement methods need dif-
ferent ways to overcome IDs. Therefore it is complicated to
propose a universal solution, which needs further research.

This study makes the following contributions. A system
that can gather light absorbance on human earlobes is devel-
oped, and clinical trials obtain a clinical dataset that contains
4012 samples. We proposed a “Transfer and Collaborative
Learning method for personalized Noninvasive Blood Glu-
cose Measurement Modeling” that can overcome IDs. Com-
pared with alternate solutions, our proposal shows the best
performance in both accuracy and universality.
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2. SIGNALS AND DATASET

In order to collect data for modeling, a device, called Earlight,
that can gather earlobe transmitted light intensity at four
different NIR wavelengths (940nm, 1450nm, 1550nm and
1710nm) is developed, as shown in Fig. 1 (a) and (b).

(a) (b)

Light intensity sensor (𝐼"(𝜆))
and

Temperature sensor (𝑇')

Temperature sensor (𝑇()

Light sources (𝐼)(𝜆))

Fig. 1. Our self-developed Earlight system: (a) Using Earligt
to measure an earlobe; (b) Probe of the Earlight.

Earlight’s probe acts like a clip, which can apply different
pressure on the earlobe to change the thickness of it, and
simultaneously measure transmitted light intensity signals
It(λ, t), earlobe temperature Tp(t) and machine temperature
Tm(t). As the thickness of the earlobe changes, the measured
It(λ) also changes. An example of the original It(λ, t), Tp(t)
and Tm(t) signals measured during 30s is illustrated with Fig.
2 (a) and (b). The sample interval is 40ms.

We conducted clinical trials at the PLA Navy General
Hospital from December 17, 2017, to February 3, 2018.
While nurses are measuring BGC for a patient by an inva-
sive glucometer, we use the Earlight to record the optical
and temperature signals and save these signals in a database.
All of the clinical trials were done under the guidance and
supervision of the PLA Navy General Hospital and following
the principles of the Declaration of Helsinki [18]. Each pa-
tient measured his/her BGC seven times a day. The dataset
obtained at this hospital is called the NAVY.

There are a total of 4012 records from 89 patients in the
NAVY dataset, and these 89 patients are indexed by PID (#1
∼ #89). To conduct universal and personal training, validat-
ing and testing for NGM models, we split the NAVY dataset
into four sub-datasets based on patient’s PID, as shown in Ta-
ble 1. The personal training dataset is composed of the first
half (by acquisition time) of the data from #51 ∼ #89 patient,
while the personal testing dataset contains the other half. The
two sub-datasets have no intersection.

Table 1. Statistics of different subdatasets in the NAVY.
Dataset PID count min max mean

All #1∼#89 4012 3.1 27.8 10.85
Universal Training #1∼#40 2253 3.1 27.8 10.68

Universal Validating #41∼#50 302 3.1 27.6 11.09
Personal Training #51∼#89 727 3.1 27.4 10.96
Personal Testing #51∼#89 730 3.1 27.2 10.80

3. MODEL

In this section, a model for estimating BGC from Earlight sig-
nals is developed. The overall framework of the non-invasive
BGC prediction model is shown in Fig. 2.

3.1. Features Construction

In this paper, the features are selected from the Earlight orig-
inal signals according to the Beer-Lambert law [19], which
is adopted for measuring the concentrations of components
in a medium by optical methods. First, the transmitted light
intensity signals are divided into Direct Current (DC) signals
(f < 0.5Hz) and Alternating Current (AC) signals (1Hz <
f < 2Hz) by Fast Fourier Transform (FFT) [20] and inverse
Fourier Transform (iFFT)[20]. Signals with other frequency
are filtered as noise. In this paper, the DC signal is regarded as
a Pressure Difference Signals (PDS), and the AC signal cor-
responding to the low phase of the DC signals is concerned
as a Pulse Wave Signals (PWS), which is caused by the heart
rate. PDS and PWS are shown in Fig. 2(c) and (d).

3.1.1. Features from PDS

In PDS, four types of absorbance-related features (mean
Low pressure Absorbance mLpA, mean High pressure Ab-
sorbance mHpA, Middle pressure Absorbance MpA and
mean Relative pressure Absorbance mRpA) are defined as
(1) ∼ (4).

mLpA(λ) =
1

Nl

∑
t∈Tl

log(
Ii(λ)

Ipdst (λ, t)
), (1)

mHpA(λ) =
1

Nh

∑
t∈Th

log(
Ii(λ)

Ipdst (λ, t)
), (2)

MpA(λ) = log(
Ii(λ)

Ipdst (λ, tm)
), (3)

mRpA(λ) =
1

Nl ×Nh

∑
tl∈Tl,th∈Th

log(
Ipdst (λ, th)

Ipdst (λ, tl)
). (4)

In (1) ∼ (4), Ii(λ) and Ipdst (λ, t) indicate incident and
transmitted light intensity in PDS. Tl, Th and tm, represent
the time sets of low and high pressure phases, and intermedi-
ate time of the rising phase, respectively. Nl andNh represent
the number of samples in Tl and Th phases.

3.1.2. Features from PWS

In PWS, three types of absorbance-related features (mean
Expend vessel Absorbance mEvA, mean Constrict vessel
Absorbance mCvA and mean Relative vessel Absorbance
mRvA), are defined as (5), (6) and (7).

mEvA(λ) =
1

Ne

∑
t∈Te

log[
Ii(λ)

Ipws
t (λ, t)

], (5)

mCvA(λ) =
1

Nc

∑
t∈Tc

log[
Ii(λ)

Ipws
t (λ, t)

], (6)
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Fig. 2. The overall framework of non-invasive BGC prediction model: (a) Original transmitted light intensity signals (It(λ, t));
(b) Original temperature signals (Tp(t) and Tm(t)); (c) Pressure Difference Signals (PDS) taken from the DC signals; (d) Pulse
Wave Signals taken from the AC signals; (e) Features selected from PDS, PWS and temperature signals; (f) The ANN model
structure we designed for BGC estimation.

mRvA(λ) =
1

Nec

Nec∑
j=1

log[
Ipws
t (λ, tcj )

Ipws
t (λ, tej )

]. (7)

In (5) ∼ (7), Ipwst (λ, t) indicates transmitted light inten-
sity in PWS. Te = {tei |i = 1, 2, ..., Ne} and Tc = {tci |i =
1, 2, ..., Nc}, which represent the time points of blood vessels
expending and constricting. Ne and Nc represent the number
of samples in Te and Tc. Nec = min(Ne, Nc).

In addition to absorbance-related features, some features
related to physiology can also be deduced from PWS. Here,
the mean amplitude (ma) and mean frequency (mf ) of PWS
are extracted, which represent the average of amplitude in
PWS and approximate value to human heart rate.

3.1.3. Features from Temperature Signals

In order to reduce the influence of temperature on BGC es-
timation, some features related to the earlobe and the circuit
temperature should be extracted as a input of the prediction
model. Tp and Tm signals are obtained by the Earlight, how-
ever, the 30s measurement time is not enough for converging
Tp to the earlobe temperature, as shown in Fig. 2(b). We use
Tp(t) = kpe

−τpt + βp and Tm(t) = kmt + βm to fit Tp(t)
and Tm(t). The temperature corresponding to the first inter-
section of Tp(t) and Tm(t) can be considered as the initial
circuit temperature T initm , and the second intersection can be
taken as earlobe temperature T earp .

3.2. ANN Model Structure

To estimate BGC value from these features, we have tried
many models including PLSR [12], SVR [13] and ANN [15],
and found that ANN works best. After experimenting with a
variety of ANN structures, the structures shown in Fig. 2(f)
presents the best BGC prediction performance.

There are one input layer, six hidden layers and one output
layer in the ANN. T earp and mf are feed directly to concat
layer as physiological background information, because there
is a clear high-level relationship among body temperature,
heart rate, and BGC. In the first three hidden layers (fc 1,
fc 2 and fc 3), features (neurons) with the same type are
united through fully-connected networks, and there is no con-
nection between different types of features (neurons). The ac-
tivate function used by fully-connected layers is ReLU [21].
Since the blood glucose concentration (BGC) ranges from 0
to 28 mmol/L, a 28×sigmoid(x) activate function is applied
to limit the output.

Table 2. Testing result (MSE / R2) of different models on
the NAVY personal testing dataset.

PID Universal Model Personalized Model
PLS[12] SVR[13] ANN ANN-TL ANN-TCL

ALL 25.9/0.48 21.8/0.54 13.9/0.66 14.5/0.77 9.7/0.82
#54 52.8/0.48 30.7/0.63 14.0/0.71 21.3/0.79 15.4/0.83
#57 17.6/0.39 10.9/0.79 12.2/0.79 11.1/0.91 9.7/0.89
#58 153.4/0.50 108.4/0.17 36.7/0.46 28.4/0.61 20.5/0.74
#59 40.7/0.48 26.3/0.38 10.7/0.64 15.8/0.86 10.2/0.79
#61 16.7/0.35 9.5/0.69 9.9/0.61 8.0/0.87 7.5/0.88
#64 8.7/0.84 7.6/0.86 7.6/0.85 4.3/0.95 5.6/0.92
#65 8.1/0.67 6.7/0.83 6.6/0.71 5.0/0.93 7.4/0.85
#72 25.9/0.43 71.6/0.19 33.5/0.54 21.4/0.66 18.4/0.79

3.3. Collaborative Learning Method

Before we propose the Collaborative Learning (CL) method,
we have tried to train the ANN model directly using the
universal training dataset by mean squared error (MSE) loss
function and ADAM algorithm [22], and test it on the per-
sonal testing set. However, although our ANN model is
superior to the PLS and SVR models in both MSE and R2,
as shown in Table. 2, it shows a lower accuracy in some
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individuals, e.g., #58 and #72. The reason for these poor per-
formances in some individuals is that the IDs between these
patients and others. If the patients in the testing dataset differ
significantly from those in the training set, the model is not
suitable for him/her.

To solve this problem, we put forward an idea of person-
alized training, which means, for different individuals, each
has a set of individual-customized model parameters wi (i in-
dicates the ith patient). The information learned by a model
from the data should be divided into two types. The first type
is Common Information (CI) that characterizes physical laws,
e.g., the absorption coefficient of glucose molecules, the re-
fractive index of water, etc. The second type is Personal In-
formation (PI) that characterizes the individual’s properties,
e.g., the skin thickness and colors, etc.

Based on the above ponder, we decided to modify the
MSE loss function so that it can learn both CI and PI at the
same time during model training. Assuming there are M pa-
tients, each patient has his/her own model parameters wi(i =
1, 2, ...M). Each wi is an L-dimensional vector. We define
PD(w1, w2, ..., wM ) to describe the difference among these
these personal model parameters, as (8),

PD(w1, w2, ..., wM ) =

∑L
i=1

∑M
j=1(wj(i)− w(i))2

M × L
, (8)

where w(i) (w(i) = 1
M

∑j=1
M wj(i)) represent the mean of

the ith model parameters across all patients. The greater the
difference among wi, the greater the PD. With PD, we pro-
pose the TCL loss function as (9),

Loss(w1, w2, ..., wM ) =
1

M

M∑
i=1

MSE(ANN(f(i), wi), bgc(i))

+ α||w||2

+ βPD(w1, w2, ..., wM ),

(9)

where β is a coefficient as α. Compared with the MSE loss
function, there is a PD item, which makes the difference
among everyone’s personal model parameters wi not be too
large. This means the model must take CI into account while
learning PI. Since the new loss function in (9) requires mul-
tiple peoples’s models to be trained at the same time, we call
this training method Collaborative Learning (CL).

4. EXPERIMENT AND CONCLUSION

We use CL to train our ANN model on the personal train-
ing dataset but found that there is too little data to make the
model converge. To speed up the model training, we use the
method of transfer learning (TL) [23, 24], which means that
we first use the classic training method to get an initial model
parameter value winit on the universal training dataset, and
then use CL to carry personalized model training from winit
for those patient in the personal training dataset. The training
method combined with TL and CL is called Transfer and Col-
laborative Learning (TCL) in this paper. These experiments
are implemented on a Python platform with Tensorflow.

The performance of our ANN model trained with TCL
(ANN-TCL) is tested on the personal testing dataset, com-
pared with other universal models (PLS, SVR, and ANN
without TCL) and a personalized model (ANN-TL, only
trained with TL). Testing results are shown in Table. 2 and
Fig. 3, which demonstrated that our ANN-TCL is superior
to other models in both R2 and EGA 1 . It could be noted
that, for the ANN-TCL model, there is no case where some
individuals perform poorly, which indicates that TCL can
overcome IDs to some extent.

Overall, this paper proposed a transfer and collaborative
learning method for noninvasive blood glucose measurement,
and experiments proved that it could reduce the impact of IDs.

Universal Model (ANN) for ALL

(a) Universal Model (ANN) for ALL

(b) Universal Model (ANN) for #58

(c) Universal Model (ANN) for #72

(d) Personalized Model (ANN-TCL) for ALL

(d) Personalized Model (ANN-TCL) for #58

(d) Personalized Model (ANN-TCL) for #72

Fig. 3. Clarke Error Grid Analysis (EGA) [25] of universal
model (ANN) and personalized model (ANN-TCL). For the
#58 and #72 patients, the performance of glucose level pre-
diction is significantly improved.

1EGA is the “gold standards” for determining the accuracy of glucose
meters, and the grid breaks down a scatterplot of a reference and an estimated
BGC value into five regions: A and B are medically acceptable. C, D, and E
would confuse treatment. The more points that fall in the region A, the better.
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